Bulletin of Volcanology

, Volume 74, Issue 4, pp 881–894 | Cite as

Geochemical heterogeneities and dynamics of magmas within the plumbing system of a persistently active volcano: evidence from Stromboli

  • Massimo Pompilio
  • Antonella Bertagnini
  • Nicole Métrich
Research Article

Abstract

We report here the most complete dataset for major and trace elements, as well as Sr isotopic compositions, of magmas erupted by Stromboli since the onset of present-day activity 1,800 years ago. Our data relate to both porphyritic scoria and lava originating in the uppermost parts of the feeding system, plus crystal-poor pumice produced by paroxysmal explosive eruption of deep-seated, fast ascending, magma. The geochemical variations recorded by Stromboli’s products allow us to identify changes in magma dynamics affecting the entire plumbing system. Deep-seated magmas vary in composition between two end-members having different key ratios in strongly incompatible trace elements and Sr isotopes. These features may be ascribed to mantle source processes (fluid/melt enrichment, variable degrees of melting) and occasional contamination by deep, mafic, cumulates. Temporal trends reveal three phases during which magmas with distinct geochemical signatures were erupted. The first phase occurred between the third and fourteenth centuries AD and was characterised by the eruption of evolved magmas sharing geochemical and Sr isotopic compositions similar to those of earlier periods of activity (<12 ka—Neostromboli and San Bartolo). The second phase, which began in the sixteenth century and lasted until the first half of the twentieth century, produced more primitive, less radiogenic, magmas with the lowest Ba/La and Rb/Th ratios of our dataset. The last phase is ongoing and is marked by a magma having the lowest Sr isotopic composition and highest Rb/Th ratio of the dataset. While this new magma can be clearly identified in the pumice erupted during the last two paroxysmal eruptions of 2003 and 2007, shallow degassed magma extruded during this time span records significant geochemical and isotopic heterogeneities. We thus suggest that the shallow reservoir has been only partially homogenised by this new magma influx. We conclude that compositional variations within the shallow magma system of a persistently active volcano provide only a biassed signal of ongoing geochemical changes induced by deep magma refilling. We argue that source changes can only be identified by interpreting the geochemistry of pumice, because it reliably represents magma transferred directly from deep portions of the plumbing system to the surface.

Keywords

Stromboli Geochemistry Magma dynamics Magma mixing Geochemical source processes 

Supplementary material

445_2011_571_MOESM1_ESM.xls (88 kb)
ESM 1Electronic appendix: major, trace and isotopic compositions (XLS 88 kb)

References

  1. Aiuppa A, Bertagnini A, Métrich N, Moretti R, Di Muro A, Liuzzo M, Tamburello G (2010) A model of degassing for Stromboli volcano. Earth Planet Sci Lett 295(1–2):195–204CrossRefGoogle Scholar
  2. Albarède F (1993) Residence time analysis of geochemical fluctuations in volcanic series. Geochim Cosmochim Acta 57(3):615–621CrossRefGoogle Scholar
  3. Allègre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25CrossRefGoogle Scholar
  4. Arrighi S, Rosi M, Tanguy JC, Courtillot V (2004) Recent eruptive history of Stromboli (Aeolian Islands, Italy) determined from high-accuracy archeomagnetic dating. Geophys Res Lett 31(19):L19603CrossRefGoogle Scholar
  5. Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanologica 3:173–187Google Scholar
  6. Bertagnini A, Métrich N, Landi P, Rosi M (2003) Stromboli volcano (Aeolian Archipelago, Italy): an open window on the deep-feeding system of a steady state basaltic volcano. J Geophys Res 108(B7): 2336.Google Scholar
  7. Bertagnini A, Métrich N, Francalanci L, Landi P, Tommasini S, Conticelli S (2008) Volcanology and magma geochemistry of the present-day activity: constraints on the feeding system. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli volcano: an integrated study of the 2002–2003 eruption. American Geophysical Union, Washington, pp 19–37CrossRefGoogle Scholar
  8. Bertagnini A, Di Roberto A, Pompilio M (2011) Paroxysmal activity at Stromboli: lessons from the past. Bull Volcanol. doi:10.1007/s00445-011-0470-3
  9. Bonaccorso A, Cardaci C, Coltelli M, Del Carlo P, Falsaperla S, Pannucci S, Pompilio M, Villari L (1996) Volcanic activity on Stromboli in 1993. Bull Volc Erupt Supp Bull Volcanol 33:7–13Google Scholar
  10. Burton M, Allard P, Murè F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven Strombolian Explosive activity. Science 317(5835):227–230CrossRefGoogle Scholar
  11. Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (2008) The Stromboli volcano: an integrated study of the 2002–2003 eruption. AGU, WashingtonCrossRefGoogle Scholar
  12. Calvari S, Branca S, Corsaro R, De Beni E, Miraglia L, Norini G, Wijbrans J, Boschi E (2010) Reconstruction of the eruptive activity on the NE sector of Stromboli volcano: timing of flank eruptions since 15 ka. Bull Volcanol 73(1):101–112CrossRefGoogle Scholar
  13. Capaldi G, Guerra I, Lo Bascio A, Luongo G, Pace R, Rapolla A, Scarpa R, Del Pezzo E, Martini M, Ghiara R, Lirer L, Munno R, La Volpe L (1978) Stromboli and its 1975 eruption. Bull Volcanol 41(3):1–27CrossRefGoogle Scholar
  14. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Newslett 25(2–3):187–198CrossRefGoogle Scholar
  15. Chouet B, Dawson P, Martini M (2008) Upper conduit structure and explosion dynamics at Stromboli. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli volcano: an integrated study of the 2002–2003 eruption. AGU, Washington, pp 81–92CrossRefGoogle Scholar
  16. Clocchiatti R (1981) La transition augite diopside et les liquides silicates intra-cristalline dans les pyroclastes de l'activite actuelle du Stromboli: temioignages de la reinjection et du melange magmatiques. Bull Volcanol 44(3):339–357CrossRefGoogle Scholar
  17. Corsaro R, Pompilio M (2004) Magma dynamics in the shallow plumbing system of Mt. Etna as recorded by compositional variations in volcanics of recent summit activity (1995–1999). J Volcanol Geotherm Res 137(1–3):55–71CrossRefGoogle Scholar
  18. De Campos CP, Dingwell DB, Perugini D, Civetta L, Fehr TK (2008) Heterogeneities in magma chambers: insights from the behavior of major and minor elements during mixing experiments with natural alkaline melts. Chem Geol 256:131–145CrossRefGoogle Scholar
  19. De Fino M, La Volpe L, Falsaperla S, Frazzetta G, Neri G, Francalanci L, Rosi M, Sbrana A (1988) The Stromboli eruption of December 6, 1985–April 25, 1986: volcanological, petrological and seismological data. Rend SIMP 43:1021–1038Google Scholar
  20. Di Carlo I, Pichavant M, Rotolo SG, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the golden pumice, Stromboli volcano (Italy). J Petrol 47(7):1317–1343CrossRefGoogle Scholar
  21. Di Roberto A, Bertagnini A, Pompilio M, Gamberi F, Marani MP, Rosi AM (2008) Newly discovered submarine flank eruption at Stromboli volcano (Aeolian Islands, Italy). Geophys Res Lett 35(16):L16310CrossRefGoogle Scholar
  22. D'Oriano C, Bertagnini A, Pompilio M (2011) Ash erupted during normal activity at Stromboli (Aeolian Islands, Italy) raises questions on how the feeding system works. Bull Volcanol 73:471–477Google Scholar
  23. Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory. AGU, Washington, DC, USA, pp 23–45CrossRefGoogle Scholar
  24. Falsaperla S, Lanzafame G, Longo V, Spampinato S (1999) Regional stress field in the area of Stromboli (Italy): insights into structural data and crustal tectonic earthquakes. J Volcanol Geotherm Res 88(3):147–166CrossRefGoogle Scholar
  25. Francalanci L, Barbieri M, Manetti P, Peccerillo A, Tolomeo L (1988) Sr Isotopic systematics in volcanic rocks from the island of Stromboli, Italy (Aeolian Arc). Chem Geol 73(2):109–124Google Scholar
  26. Francalanci L, Tommasini S, Conticelli S, Davies G (1999) Sr isotope evidence for short magma residence time for the 20th century activity at Stromboli volcano, Italy. Earth Planet Sci Lett 167(1–2):61–69CrossRefGoogle Scholar
  27. Francalanci L, Tommasini S, Conticelli S (2004) The volcanic activity of Stromboli in the 1906–1998 AD period: mineralogical, geochemical and isotope data relevant to the understanding of the plumbing system. J Volcanol Geotherm Res 131(1–2):179–211CrossRefGoogle Scholar
  28. Francalanci L, Davies G, Lustenhouwer W, Tommasini S, Mason P, Conticelli S (2005) Intra-grain Sr isotope evidence for crystal recycling and multiple magma reservoirs in the recent activity of Stromboli volcano, southern Italy. J Petrol 46(10):1997CrossRefGoogle Scholar
  29. Francalanci L, Bertagnini A, Metrich N, Renzulli A, Vannucci R, Landi P, Del Moro S, Menna M, Petrone CM, Nardini I (2008) Mineralogical, geochemical, and isotopic characteristics of the ejecta from the 5 April 2003 paroxysm at Stromboli, Italy: inferences on the preeruptive magma dynamics. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli volcano: an integrated study of the 2002–2003 eruption. AGU, Washington, pp 331–345CrossRefGoogle Scholar
  30. Francalanci L, Avanzinelli R, Nardini I, Tiepolo M, Davidson JP, Vannucci R (2011) Crystal recycling in the steady-state system of the active Stromboli volcano: a 2.5-ka story inferred from in situ Sr-isotope and trace element data. Contrib Mineral Petrol. doi:10.1007/s00410-011-0661-0
  31. Gasparini P, Lirer L, Luongo G (1967) Caratteristiche petrochimiche e fisiche della lava emessa dallo Stromboli nell'aprile del 1967. Ann OssVes:1–24Google Scholar
  32. Harris A, Ripepe M (2007a) Temperature and dynamics of degassing at Stromboli. J Geophys Res 112(B3)Google Scholar
  33. Harris A, Ripepe M (2007b) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics—a case study from Stromboli. Chem Erde 67(1):1–35CrossRefGoogle Scholar
  34. Harris AJL, Stevens NF, Maciejewski AJH, Rollin PJ (1996) Thermal evidence for linked vents at Stromboli. Acta Vulcanol 8:57–62Google Scholar
  35. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalt—new constraints on mantle evolution. Earth Planet Sci Lett 79(1–2):33–45CrossRefGoogle Scholar
  36. Hornig-Kjarsgaard I, Keller J, Koberski U, Stadlbauer E, Francalanci L, Lenhart R (1993) Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian arc, Italy. Acta Vulcanologica 3:21–68Google Scholar
  37. Johnson M, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosys 1(12):1007CrossRefGoogle Scholar
  38. Kazahaya K, Shinohara H, Saito G (1994) Excessive degassing of Izu-Oshima volcano: magma convection in a conduit. Bull Volcanol 56(3):207–216CrossRefGoogle Scholar
  39. Kessel R, Schmidt M, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727CrossRefGoogle Scholar
  40. Laiolo M, Cigolini C (2006) Mafic and ultramafic xenoliths in San Bartolo lava field: new insights on the ascent and storage of Stromboli magmas. Bull Volcanol 68(7–8):653–670CrossRefGoogle Scholar
  41. Landi P, Métrich N, Bertagnini A, Rosi M (2004) Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy). Contrib Mineral Petrol 147(2):213–227CrossRefGoogle Scholar
  42. Landi P, Francalanci L, Pompilio M, Rosi M, Corsaro RA, Petrone CM, Nardini I, Miraglia L (2006) The December 2002 July 2003 effusive event at Stromboli volcano, Italy: insights into the shallow plumbing system by petrochemical studies. J Volcanol Geotherm Res 155(3–4):263–284CrossRefGoogle Scholar
  43. Landi P, Metrich N, Bertagnini A, Rosi M (2008) Recycling and "re-hydration" of degassed magma inducing transient dissolution/crystallization events at Stromboli (Italy). J Volcanol Geotherm Res 174(4):325–336CrossRefGoogle Scholar
  44. Landi P, Corsaro RA, Francalanci L, Civetta L, Miraglia L, Pompilio M, Tesoro R (2009) Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands, Italy): mineralogical, geochemical and isotopic data. J Volcanol Geotherm Res 182(3–4):255–268CrossRefGoogle Scholar
  45. Landi P, Marchetti E, La Felice S, Ripepe M, Rosi M (2011) Integrated petrochemical and geophysical data reveals thermal distribution of the feeding conduits at Stromboli volcano, Italy. Geophys Res Lett 38:L08305CrossRefGoogle Scholar
  46. Marchetti E, Ripepe M (2005) Stability of the seismic source during effusive and explosive activity at Stromboli Volcano. Geophys Res Lett 32(3):L3307CrossRefGoogle Scholar
  47. Marchetti E, Ripepe M, Genco R (2009) Ground deformation and seismicity related to the propagation and drainage of the dyke feeding system during the 2007 effusive eruption at Stromboli volcano (Italy). J Volcanol Geotherm Res 182:155–161CrossRefGoogle Scholar
  48. Métrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli volcano (Aeolian Islands, Italy). J Petrol 42(8):1471–1490CrossRefGoogle Scholar
  49. Métrich N, Bertagnini A, Landi P, Rosi M, Belhadj O (2005) Triggering mechanism at the origin of paroxysms at Stromboli (Aeolian Archipelago, Italy): the 5 April 2003 eruption. Geophys Res Lett 32(10):L10305CrossRefGoogle Scholar
  50. Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51(3):603–626CrossRefGoogle Scholar
  51. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  52. Petrone C, Olmi F, Braschi E, Francalanci L (2006) Mineral chemistry profile: a valuable approach to unravel magma mixing processes in the recent volcanic activity of Stromboli, Italy. Per Mineral 75:277–292Google Scholar
  53. Petrone CM, Braschi E, Francalanci L (2009) Understanding the collapse–eruption link at Stromboli, Italy: a microanalytical study on the products of the recent Secche di Lazzaro phreatomagmatic activity. J Volcanol Geotherm Res 188(4):315–332CrossRefGoogle Scholar
  54. Pichavant M, Di Carlo I, Le Gac Y, Rotolo SG, Scaillet B (2009) Experimental constraints on the deep magma feeding system at Stromboli volcano. Italy J Petrol 50:601–624CrossRefGoogle Scholar
  55. Pichavant M, Pompilio M, D'Oriano C, Di Carlo I (2011) Petrography, mineralogy and geochemistry of a primitive pumice from Stromboli: implications for the deep feeding system. Eur J Mineral 23:499–517CrossRefGoogle Scholar
  56. Pietruszka AJ, Garcia MO (1999) The size and shape of Kilauea Volcano's summit magma storage reservoir: a geochemical probe. Earth Planet Sci Lett 167(3–4):311–320CrossRefGoogle Scholar
  57. Ponte G (1948) Attività straordinaria dello Stromboli. Ann Geofis 1:200–2002Google Scholar
  58. Reiners PW, Nelson BK, Ghiorso MS (1995) Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle-derived magmas. Geology 23:563–566CrossRefGoogle Scholar
  59. Ripepe M, Marchetti E, Ulivieri G, Harris A, Dehn J, Burton M, Caltabiano T, Salerno G (2005) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33(5):341–344CrossRefGoogle Scholar
  60. Rittman A (1931) Der ausbruch des Stromboli am 11 September 1930. Zeitschrift für vulkanologie 14:47–77Google Scholar
  61. Rosi M (1980) The island of Stromboli. Rend Soc It Miner Petrol 36:1–24Google Scholar
  62. Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli Volcano (Italy). Bull Volcanol 62:294–300CrossRefGoogle Scholar
  63. Scandone R, Barberi F, Rosi M (2009) The 2007 eruption of Stromboli. J Volcanol Geotherm Res 182:3–4CrossRefGoogle Scholar
  64. Schiavi F, Tiepolo M, Pompilio M, Vannucci R (2006) Tracking magma dynamics by laser ablation (LA)-ICPMS trace element analysis of glass in volcanic ash: the 1995 activity of Mt. Etna Geophys Res Lett 33:L05304CrossRefGoogle Scholar
  65. Schiavi F, Kobayashi K, Moriguti T, Nakamura E, Pompilio M, Tiepolo M, Vannucci R (2010) Degassing, crystallization and eruption dynamics at Stromboli: trace element and lithium isotopic evidence from 2003 ashes. Contrib Mineral Petrol 4:541–561CrossRefGoogle Scholar
  66. Sims KWW, DePaolo DJ (1997) Inferences about mantle magma sources from incompatible element concentration ratios in oceanic basalts. Geochim Cosmochim Acta 61(4):765–784CrossRefGoogle Scholar
  67. Smith PM, Asimow PD (2005) Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosyst 6(2):1–8CrossRefGoogle Scholar
  68. Speranza F, Pompilio M, Sagnotti L (2004) Paleomagnetism of spatter lavas from Stromboli volcano (Aeolian Islands, Italy): implications for the age of paroxysmal eruptions. Geophys Res Lett:L02607Google Scholar
  69. Speranza F, Pompilio M, Caracciolo FD, Sagnotti L (2008) Holocene eruptive history of the Stromboli volcano: constraints from paleomagnetic dating. J Geophys Res 113(B9): B09101Google Scholar
  70. Thornber C (2003) Magma-reservoir processes revealed by geochemistry of the Pu'u 'O'o-Kupaianaha eruption. USGS Prof Paper 1676:121–136Google Scholar
  71. Tommasini S, Heumann A, Avanzinelli R, Francalanci L (2007) The fate of high-angle dipping slabs in the subduction factory: an integrated trace element and radiogenic isotope (U, Th, Sr, Nd, Pb) study of Stromboli volcano, Aeolian Arc, Italy. J Petrol 48(12):2407–2430CrossRefGoogle Scholar
  72. Washington HS (1917) Persistence of vents at Stromboli and its bearing on volcanic mechanism. Geol Soc Am Bull 28:249–278Google Scholar
  73. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231(1–2):53–72CrossRefGoogle Scholar
  74. Zou HB, Zindler A (1996) Constraints on the degree of dynamic partial melting and source composition using concentration ratios in magmas. Geochim Cosmochim Acta 60(4):711–717CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Massimo Pompilio
    • 1
  • Antonella Bertagnini
    • 1
  • Nicole Métrich
    • 1
    • 2
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaSezione di PisaPisaItaly
  2. 2.Institut de Physique du GlobeSorbonne-Paris CitéParisFrance

Personalised recommendations