Advertisement

Bulletin of Volcanology

, Volume 74, Issue 4, pp 873–880 | Cite as

Magma convection and mixing dynamics as a source of Ultra-Long-Period oscillations

  • Antonella Longo
  • Paolo Papale
  • Melissa Vassalli
  • Gilberto Saccorotti
  • Chiara P. Montagna
  • Andrea Cassioli
  • Salvatore Giudice
  • Enzo Boschi
Research Article

Abstract

Many volcanic eruptions are shortly preceded by injection of new magma into a pre-existing, shallow (<10 km) magma chamber, causing convection and mixing between the incoming and resident magmas. These processes may trigger dyke propagation and further magma rise, inducing long-term (days to months) volcano deformation, seismic swarms, gravity anomalies, and changes in the composition of volcanic plumes and fumaroles, eventually culminating in an eruption. Although new magma injection into shallow magma chambers can lead to hazardous event, such injection is still not systematically detected and recognized. Here, we present the results of numerical simulations of magma convection and mixing in geometrically complex magmatic systems, and describe the multiparametric dynamics associated with buoyant magma injection. Our results reveal unexpected pressure trends and pressure oscillations in the Ultra-Long-Period (ULP) range of minutes, related to the generation of discrete plumes of rising magma. Very long pressure oscillation wavelengths translate into comparably ULP ground displacements with amplitudes of order 10−4–10−2 m. Thus, new magma injection into magma chambers beneath volcanoes can be revealed by ULP ground displacement measured at the surface.

Keywords

Magma dynamics Magma convection Magma mixing ULP ground displacement 

Notes

Acknowledgments

This work has been performed in the frame of Projects FIRB RBAU01M72W and RBPR05B2ZJ; and Projects INGV-DPC 2004–2006 V3_2, and 2007–2009 V1 and V4.

Supplementary material

445_2011_570_MOESM1_ESM.avi (5.3 mb)
Supplementary Movie 1 This movie shows magma composition for the Mount Etna case. Initial compositions are made of 90 wt.% of the corresponding component and 10 wt.% of the other component, to avoid numerical shifts to component fractions >1 or <0. The zero on the depth scale corresponds to sea level (AVI 5,412 kb)
445_2011_570_MOESM2_ESM.avi (5.5 mb)
Supplementary Movie 2 This movie shows overpressure for the Mount Etna case. Overpressure is given by pressure at local time–space minus the pressure at same place and time zero. The zero on the depth scale corresponds to sea level (AVI 5,645 kb)
445_2011_570_MOESM3_ESM.avi (5.3 mb)
Supplementary Movie 3 This movie shows gas volume fraction for the Mount Etna case. Calculated gas volume and multiphase magma densities at magma interface and time zero are 10 vol.% and 2,250 kg/m3 (shallow magma), and 35 vol.% and 1,700 kg/m3 (deep magma). The zero on the depth scale corresponds to sea level (AVI 5,433 kb)
445_2011_570_MOESM4_ESM.avi (5 mb)
Supplementary Movie 4 This movie shows composition for the Campi Flegrei case. Initial compositions are made of 90 wt.% of the corresponding component and 10 wt.% of the other component, to avoid numerical shifts to component fractions >1 or <0. The depth scale on the left refers to meters below sea level (AVI 5,157 kb)
445_2011_570_MOESM5_ESM.avi (2.3 mb)
Supplementary Movie 5 This movie shows overpressure for the Campi Flegrei case. Overpressure is given by pressure at local time–space minus the pressure at same place and time zero. The depth scale on the left refers to meters below sea level (AVI 2,308 kb)
445_2011_570_MOESM6_ESM.avi (2.2 mb)
Supplementary Movie 6 This movie shows gas volume fraction for the Campi Flegrei case. Calculated gas volume fractions and multiphase magma densities at magma interface and time zero are 3.5 vol.% and 2,400 kg/m3 (shoshonite), and 7.5 vol.% and 2,350 kg/m3 (basalt). The depth scale on the left indicates meters below sea level (AVI 2,284 kb)
445_2011_570_MOESM7_ESM.doc (13.5 mb)
ESM 1 (DOC 13,835 kb)

References

  1. Aiuppa A, Moretti R, Federico C, Giudice G, Guerrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118. doi: 10.1130/G24149A.1 CrossRefGoogle Scholar
  2. Aki K, Richards PG (2002) Quantitative seismology. University Science, SausalitoGoogle Scholar
  3. Andronico D, Branca S, Calvari S, Burton M, Caltabiano T, Corsaro RA, Del Carlo P, Garfi G, Lodato L, Miraglia L, Murè F, Neri M, Pecora E, Pompilio M, Salerno G, Spampinato L (2005) A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system. Bull Volcanol 67:314–330. doi: 10.1029/2008GL034242 CrossRefGoogle Scholar
  4. Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano–Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios. Chem Geol 270:135–147. doi: 10.1016/j.chemgeo.2009.11.012 CrossRefGoogle Scholar
  5. Bateman R (1995) The interplay between crystallization, replenishment and hybridization in large felsic magma chambers. Earth Sci Rev 39:91–106CrossRefGoogle Scholar
  6. Bonaccorso A, Aloisi M, Mattia M (2002) Dyke emplacement forerunning the Etna July 2001 eruption modelled through continuous tilt and GPS data. Geophys Res Lett 29. doi: 10.1029/2001GL014397
  7. Cannata A, Hellweg M, Di Grazia G, Ford S, Alparone S, Gresta S, Montalto P, Patanè D (2009) Long period and very long period events at Mt. Etna volcano: characteristics, variability and causality, and implications for their sources. J Volcanol Geotherm Res 187:227–249CrossRefGoogle Scholar
  8. Carbone D, Zuccarello L, Saccorotti G, Filippo G (2006) Analysis of simultaneous gravity and tremor anomalies observed during the 2002–2003 Etna eruption. Earth Planet Sci Lett 245:616–629CrossRefGoogle Scholar
  9. Caricchi L, Burlini L, Ulmer P, Gerya T, Vassalli M, Papale P (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet Sci Lett 264:402–419CrossRefGoogle Scholar
  10. Corsaro RA, Miraglia L, Pompilio M (2007) Petrologic evidence of a complex plumbing system feeding the July–August 2001 eruption of Mt. Etna, Sicily, Italy. Bull Volcanol 69:401–421CrossRefGoogle Scholar
  11. Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosyst 10. doi: 10.1029/2008GC002138
  12. Di Renzo V, Arienzo I, Civetta L, D’Antonio M, Tonarini S, Di Vito MA, Orsi G (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281:227–241CrossRefGoogle Scholar
  13. Folch A, Marti J (1998) The generation of overpressure in felsic magma chambers by replenishment. Earth Planet Sci Lett 163:301–314CrossRefGoogle Scholar
  14. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–143CrossRefGoogle Scholar
  15. Giordano D, Polacci M, Papale P, Caricchi L (2010) Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna. Solid Earth 1:61–69. doi: 10.5194/se-1-61-2010 CrossRefGoogle Scholar
  16. Havskov J, Alguacil G (2004) Instrumentation in earthquake seismology. Springer, New York, p 358Google Scholar
  17. Houlí H, Montagner JP (2007) Hidden dykes detected on ultra long period seismic signals at Piton de la Fournaise volcano. Earth Planet Sci Lett 261:1–8CrossRefGoogle Scholar
  18. Lay L, Wallace TC (1995) Modern global seismology. Academic Press, New York, p 521Google Scholar
  19. Lokmer I, Saccorotti G, Di Lieto B, Bean CJ (2008) Temporal evolution of long-period seismicity at Etna Volcano, Italy, and its relationships with the 2004–2005 eruption. Earth Planet Sci Lett 266:205–220CrossRefGoogle Scholar
  20. Longo A, Vassalli M, Papale P, Barsanti M (2006) Numerical simulation of convection and mixing in magma chambers replenished with CO2-rich magma. Geophys Res Lett 33. doi: 10.1029/2006GL027760
  21. Mangiacapra A, Moretti R, Rutherford MJ, Civetta L, Orsi G, Papale P (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35. doi: 10.1029/2008GL035550
  22. O’Brien GS, Bean CJ (2004) A 3D discrete elastic lattice method for seismic wave propagation in heterogeneous media with topography. Geophys Res Lett 31. doi: 10.1029/2004GL020069
  23. Papale P (2001) Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing. J Geophys Res 106:11043–11065CrossRefGoogle Scholar
  24. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the multicomponent volatile saturation surface in silicate melts. Chem Geol 229:78–95CrossRefGoogle Scholar
  25. Patanè D, Di Grazia G, Cannata A, Montalto P, Boschi E (2008) Shallow magma pathway geometry at Mt. Etna volcano. Geochem Geophys Geosyst 9. doi: 10.1029/2008GC002131
  26. Sanderson R, Johnson J, Lees J (2010) Ultra-long period seismic signals and cyclic deflation coincident with eruptions at Santiaguito volcano, Guatemala. J Volcanol Geotherm Res 198:35–44CrossRefGoogle Scholar
  27. Scarpa R (2001) Predicting volcanic eruptions. Science 293:615–616. doi: 10.1126/science.1063606 CrossRefGoogle Scholar
  28. Snyder D (2000) Thermal effects of the intrusion of basaltic magma into a more silicic magma chamber and implications for eruption triggering. Earth Planet Sci Lett 175:257–273CrossRefGoogle Scholar
  29. Spilliaert N, Allard P, Métrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111. doi: 10.1029/2005JB003934
  30. Voight B, Linde AT, Sacks IS, Mattioli GS, Sparks RSJ, Elsworth D, Hidayat D, Malin PE, Shalev E, Widiwijayanti C, Young SR, Bass V, Clarke A, Dunkley P, Johnston W, McWorther N, Neuberg J, Williams P (2006) Unprecedented pressure increase in deep magma reservoir triggered by lava-dome collapse. Geophys Res Lett 33. doi: 10.1029/2005GL024870
  31. Wallace P, Anderson AT Jr (2000) Volatiles in magmas. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 149–170Google Scholar
  32. Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35. doi: 10.1029/2008GL034242

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Antonella Longo
    • 1
  • Paolo Papale
    • 1
  • Melissa Vassalli
    • 2
  • Gilberto Saccorotti
    • 1
  • Chiara P. Montagna
    • 1
  • Andrea Cassioli
    • 3
  • Salvatore Giudice
    • 1
  • Enzo Boschi
    • 4
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaSezione di PisaPisaItaly
  2. 2.School of Geological SciencesUniversity College DublinBelfieldIreland
  3. 3.Dipartimento di Sistemi e InformaticaUniversità di FirenzeFlorenceItaly
  4. 4.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly

Personalised recommendations