Bulletin of Volcanology

, Volume 73, Issue 10, pp 1535–1565 | Cite as

High-temperature emplacement of the Cerro Galán and Toconquis Group ignimbrites (Puna plateau, NW Argentina) determined by TRM analyses

  • Chiara LestiEmail author
  • Massimiliano Porreca
  • Guido Giordano
  • Massimo Mattei
  • Raymond A. F. Cas
  • Heather M. N. Wright
  • Chris B. Folkes
  • Josè Viramonte
Research Article


Estimates of pyroclastic flow emplacement temperatures in the Cerro Galán ignimbrite and Toconquis Group ignimbrites were determined using thermal remanent magnetization of lithic clasts embedded within the deposits. These ignimbrites belong to the Cerro Galán volcanic system, one of the largest calderas in the world, in the Puna plateau, NW Argentina. Temperature estimates for the 2.08-Ma Cerro Galán ignimbrite are retrieved from 40 sites in 14 localities (176 measured clasts), distributed at different distances from the caldera and different stratigraphic heights. Additionally, temperature estimates were obtained from 27 sample sites (125 measured clasts) from seven ignimbrite units forming the older Toconquis Group (5.60–4.51 Ma), mainly outcropping along a type section at Rio Las Pitas, Vega Real Grande. The paleomagnetic data obtained by progressive thermal demagnetization show that the clasts of the Cerro Galán ignimbrite have one single magnetic component, oriented close to the expected geomagnetic field at the time of emplacement. Results show therefore that most of the clasts acquired a new magnetization oriented parallel to the magnetic field at the moment of the ignimbrite deposition, suggesting that the clasts were heated up to or above the highest blocking temperature (T b) of the magnetic minerals (T b = 580°C for magnetite; T b = 600–630°C for hematite). We obtained similar emplacement temperature estimations for six out of the seven volcanic units belonging to the Toconquis Group, with the exception of one unit (Lower Merihuaca), where we found two distinct magnetic components. The estimation of emplacement temperatures in this latter case is constrained at 580–610°C, which are lower than the other ignimbrites. These estimations are also in agreement with the lowest pre-eruptive magma temperatures calculated for the same unit (i.e., 790°C; hornblende–plagioclase thermometer; Folkes et al. 2011b). We conclude that the Cerro Galán ignimbrite and Toconquis Group ignimbrites were emplaced at temperatures equal to or higher than 620°C, except for Lower Merihuaca unit emplaced at lower temperatures. The homogeneity of high temperatures from proximal to distal facies in the Cerro Galán ignimbrite provides constraints for the emplacement model, marked by a relatively low eruption column, low levels of turbulence, air entrainment, surface–water interaction, and a high level of topographic confinement, all ensuring minimal heat loss.


Emplacement temperatures Paleomagnetism Pyroclastic flow Cerro Galán ignimbrite Toconquis Group. 



The authors wish to thank Ann Hirt from the ETH Earth Magnetism Laboratory, Zurich, for the support in magnetic mineralogy analyses and Kathy Cashman, Elena Zanella, and Conal McNiocaill for the suggestion and helpful review of the manuscript. This work was partly funded by ARC grant DP0663560 to Ray Cas.


  1. Aramaki S, Akimoto S (1957) Temperature estimation of pyroclastic deposits by natural remanent magnetism. Am J Sci 255:619–627CrossRefGoogle Scholar
  2. Arias M, Bianchi AR (1996) Estadisticas Climatologicas de la provincia de Salta. INTA, SaltaGoogle Scholar
  3. Banks NG, Hoblitt RP (1981) Summary of temperature studies on 1980 deposits. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens. USGS Prof Paper 1250. USGS, Washington, DC, pp 295–314Google Scholar
  4. Bardot L (2000) Emplacement temperature determinations of proximal pyroclastic deposits on Santorini, Greece, and their implications. Bull Volcanol 61:450–467CrossRefGoogle Scholar
  5. Bardot L, McClelland E (2000) The reliability of emplacement temperature estimates using paleomagnetic methods: a case study from Santorini, Greece. Geophys J Int 143(1):39–51CrossRefGoogle Scholar
  6. Bianchi R, Yañez CE (1992) Las precipitaciones en el Noroeste Argentino, IIth edn. INTA-Estación Experimental Agropecuaria Salta, SaltaGoogle Scholar
  7. Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Mem Geol Soc Lond 27:143Google Scholar
  8. Bursik MI, Woods AW (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58:175–193CrossRefGoogle Scholar
  9. Calder ES, Cole PD, Dade WB, Druitt TH, Hoblitt R, Huppaert HE, Ritchie L, Spark RSJ, Young SR (1999) Mobility of pyroclastic flows and surges at the Soufriere Hills, Montserrat. Geophys Res Lett 26:537–540CrossRefGoogle Scholar
  10. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, OxfordGoogle Scholar
  11. Cas RAF, Wright JV (1987) Volcanic succession, modern and ancient. Chapman and Hall, LondonCrossRefGoogle Scholar
  12. Cas RAF, Wright HMN, Lesti C, Porreca M, Folkes C, Giordano G,Viramonte J (2011) The flow dynamics of an extremely large volume pyroclastic flow, the 2.08 Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types. In: Cas RAF, Cashman K (eds) The Cerro Galán ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol (in press)Google Scholar
  13. Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperature of the A.D. 79 pyroclastic density current deposits (Vesuvius, Italy). J Geophys Res 109:B02207. doi: 10.1029/2002JB002251 CrossRefGoogle Scholar
  14. Chadima M, Hrouda F (2006) Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Travaux Géophysiques 27:20–21Google Scholar
  15. Coira B, Kay SM, Viramonte J (1993) Upper Cenozoic magmatic evolution of the Argentine Puna—a model for changing subduction geometry. Internat Geol Rev 35:677–720CrossRefGoogle Scholar
  16. Dunlop DJ, Özdemir Ö (1997) Rock magnetism, fundamentals and frontiers. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Fisher RA (1953) Dispersion on a sphere. Proc Roy Soc London 21A:295–305Google Scholar
  18. Folkes CB, Wright HM, Cas RAF, de Silva SL, Lesti C, Viramonte JG (2011a) A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi: 10.1007/s00445-011-0459-y
  19. Folkes CB, de Silva SL, Wright HM, Cas RAF (2011b) Geochemical homogeneity of a long-lived, large silicic system; evidence from the Cerro Galan caldera, NW Argentina. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi: 10.1007/s00445-011-0511-y
  20. Francis PW, O’Callaghan LJ, Kretschmar GA, Thorpe RS, Sparks RSJ, Page RN, de Barrio RE, Gillou G, Gonzalez OE (1983) The Cerro Galan ignimbrite. Nature 301:51–53Google Scholar
  21. Freundt A (1998) Formation of high grade ignimbrites. Part II. A pyroclastic suspension current model with implications for low grade ignimbrites. Bull Volcanol 60:545–567CrossRefGoogle Scholar
  22. Gonzalez OE (1984) La ignimbritas de “Ojo de Ratones” y sus relaciones regionales, provincia de Salta. In Noveno Congreso Geologico Argentino, Actas I, pp 206–220Google Scholar
  23. Giordano D, Mangiacapra A, Potuzák M, Russell JK, Romano C, Dingwell DB, Di Muro A (2006) An expanded non-Arrhenian model for silicate melt viscosity: a treatment for metaluminous, peraluminous and peralkaline liquids. Chem Geol 229:42–56CrossRefGoogle Scholar
  24. Giordano G, Dobran F (1994) Computer simulations of the Tuscolano Artemisio’s second pyroclastic flow unit (Alban Hills, Latium, Italy). J Volcanol Geotherm Res 61:69–94CrossRefGoogle Scholar
  25. Gradstein F, Ogg J, Smith A (2004) A geologic time scale. Cambridge University Press, Cambridge, p 589CrossRefGoogle Scholar
  26. Gurioli L, Pareschi MT, Zanella E, Lanza R, Deluca E, Bisson M (2005) Interaction of pyroclastic density currents with human settlements: evidence from ancient Pompeii. Geology 33(6):441–444CrossRefGoogle Scholar
  27. Hoblitt RP, Kellogg KS (1979) Emplacement temperatures of unsorted and unstratified deposits of volcanic rock debris as determined by paleomagnetic techniques. Geol Soc Am Bull Part I 90:633–642CrossRefGoogle Scholar
  28. Kay SM, Coira B, Mpodozis C (2008) Field trip guide: Neogene evolution of the central Andean Puna plateau and southern Central Volcanic Zone. Geol Soc of America, fl d013-05:119–181Google Scholar
  29. Kay SM, Coira B, Wörner G, Kay RW, Singer BS (2011) Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi: 10.1007/s00445-010-0410-7
  30. Kent DV, Ninkovich D, Pescatore T, Sparks RSJ (1981) Paleomagnetic determination of emplacement temperature of Vesuvius A.D. 79 pyroclastic deposits. Nature 290:393–396CrossRefGoogle Scholar
  31. Lowrie W (1990) Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys Res Lett 17(2):159–162CrossRefGoogle Scholar
  32. Mandeville CW, Carey S, Sigurdsson H, King J (1994) Paleomagnetic evidence for high-temperature emplacement of the 1883 subaqueous pyroclastic flows from Krakatau Volcano, Indonesia. J Geophys Res 99:9487–9504CrossRefGoogle Scholar
  33. Martì J, Diez-Gil JL, Ortiz R (1991) Conduction model for the thermal influence of lithic clasts in mixtures of hot gases and ejecta, J Geophys Res 96:21,879–21,885Google Scholar
  34. Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest eruption on Earth. Bull Volcanol 66:735–748. doi: 10.1007/s00445-004-0355-9 CrossRefGoogle Scholar
  35. McClelland-Brown EA (1982) Discrimination of TRM and CRM by blocking-temperature spectrum analysis. Phys Earth Planet Int 30:405–414CrossRefGoogle Scholar
  36. McClelland EA, Druitt TH (1989) Paleomagnetic estimates of emplacement temperatures of pyroclastic deposits on Santorini, Greece. Bull Volcanol 51:16–27CrossRefGoogle Scholar
  37. McClelland E, Wilson CJN, Bardot L (2004) Palaeotemperature determinations for the 1.8-ka Taupo ignimbrite, New Zealand, and implications for the emplacement history of a high-velocity pyroclastic flow. Bull Volcanol 66:492–513. doi: 10.1007/s00445-003-0335-5 CrossRefGoogle Scholar
  38. Paterson GA, Roberts AP, Mac Niocaill C, Muxworthy AR, Gurioli L, Viramonte JG, Navarro C (2010) Paleomagnetic determination of emplacement temperatures of pyroclastic deposits: an underutilised tool. Bull Volcanol. doi: 10.1007/s00445-009-0324-4
  39. Porreca M, Giordano G, Mattei M, Musacchio P (2006) Evidence of two Holocene phreatomagmatic eruptions at Stromboli volcano (Aeolian Islands) from paleomagnetic data. Geophys Res Lett 33:L21316. doi: 10.1029/2006GL027575 CrossRefGoogle Scholar
  40. Porreca M, Mattei M, MacNiocaill C, Giordano G, McClelland E, Funiciello R (2008) Paleomagnetic evidence for low-temperature emplacement of the phreatomagmatic Peperino Albano ignimbrite (Colli Albani Volcano, Central Italy). Bull Volcanol 70:877–893. doi: 10.1007/s00445-007-0176-8 CrossRefGoogle Scholar
  41. Pullaiah GE, Irving E, Buchan KL, Dunlop DJ (1975) Magnetization changes caused by burial and uplift. Earth Planet Sci Lett 28:133–143CrossRefGoogle Scholar
  42. Quane SL, Russel K (2005) Ranking welding intensities in pyroclastic deposits. Bull Volcanol 67(2):129–143. doi: 10.1007/s00445-004-0367-5 CrossRefGoogle Scholar
  43. Riller U, Petrinovic I, Ramelow J, Strecker M, Oncken O (2001) Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes. Earth Planet Sci Lett 188:299–311CrossRefGoogle Scholar
  44. Salfity JA, Gorustovih S, Moya M, Amengual R (1984) Marco tectónico de la sedimentación y efusividad cenozoicas de la Puna Argentina. In: IX Congreso Geológico Argentino, Actas I, pp 5–515Google Scholar
  45. Scott AC, Sparks RSJ, Bull ID, Knicker H, Evershed RP (2008) Temperature proxy data and their significance for the understanding of pyroclastic density currents. Geology 36(2):143–146. doi: 10.1130/G24439A CrossRefGoogle Scholar
  46. Sparks RSJ, Francis PW, Hamer RD, Pankhurst RJ, O’Callaghan LO, Thorpe RS, Page R (1985) Ignimbrites of the Cerro Galán caldera, NW Argentina. J Volcanol Geotherm Res 24:205–248CrossRefGoogle Scholar
  47. Sulpizio R, Zanella E, Macìas JL (2008) Deposition temperature of some PDC deposits from the 1982 eruption of El Chichon volcano (Chiapas, Mexico) inferred from rock-magnetic data. J Volcanol Geotherm Res 175:494–500CrossRefGoogle Scholar
  48. Todesco M, Neri A, Esposti Ongaro T, Papale P, Rosi M (2006) Pyroclastic flow dynamics and hazard in a caldera setting: application to Phlegrean Fields (Italy). Geochem Geophys Geosys 7:11. doi: 10.1029/2006GC001314 CrossRefGoogle Scholar
  49. Viramonte JG, Galliski MA, Araña Saavedra V, Aparicio A, García Cacho L, C. Martín Escorza (1984) IX Congreso Geológico Argentino, Actas III, pp 234–254Google Scholar
  50. Weaver R, Roberts AP, Barker AJ (2002) A late diagenetic (syn-folding) magnetization carried by pyrrhotite: implications for paleomagnetic studies from magnetic iron sulphide-bearing sediments. Earth Planet Sci Lett 200:371–386CrossRefGoogle Scholar
  51. Wright HMN, Lesti C, Cas RAF, Porreca M, Viramonte JG, Folkes CB, Giordano G (2011a) Columnar jointing in vapor phase altered, non-welded Cerro Galan Ignimbrite, Paycuqui, Argentina. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi: 10.1007/s00445-011-0524-6
  52. Wright HMN, Folkes CB, Cas RAF, Cashman KV (2011b) Heterogeneous pumice populations in the 2.08 Ma Cerro Galán ignimbrite: implications for magma recharge and ascent preceding a large volume silicic eruption. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi: 10.1007/s00445-011-0525-5
  53. Wright JV (1978) Remanent magnetism of poorly sorted deposits from the Minoan eruption of Santorini. Bull Volcanol 41:131–135CrossRefGoogle Scholar
  54. Zanella E, Gurioli L, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 2. Temperature of the deposits and hazard implications. J Geophys Res 112:B05214. doi: 10.1029/2006JB004775 CrossRefGoogle Scholar
  55. Zijderveld JDA (1967) Analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in paleomagnetism. Elsevier, Amsterdam, pp 254–286Google Scholar
  56. Zlotnicki J, Pozzi JP, Boudon G, Moreau MG (1984) A new method for the determination of the setting temperature of pyroclastic deposits (example Guadeloupe: French West Indies). J Volcanol Geotherm Res 21:297–312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Chiara Lesti
    • 1
    Email author
  • Massimiliano Porreca
    • 1
    • 2
  • Guido Giordano
    • 1
  • Massimo Mattei
    • 1
  • Raymond A. F. Cas
    • 3
  • Heather M. N. Wright
    • 3
  • Chris B. Folkes
    • 3
  • Josè Viramonte
    • 4
  1. 1.Università Roma TreRomeItaly
  2. 2.Centro de Vulcanologia e Avaliação de Riscos Geológicos (CVARG), Departamento de GeociênciasUniversidade dos AçoresPonta DelgadaPortugal
  3. 3.School of GeosciencesMonash UniversityClaytonAustralia
  4. 4.Instituto GEONORTE and CONICETUniversidad Nacional de SaltaSaltaArgentina

Personalised recommendations