Skip to main content

Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA

Abstract

Three voluminous rhyolitic ignimbrites have been identified along the southern margin of the central Snake River Plain. As a result of wide-scale correlations, new volume estimates can be made for these deposits: ~350 km3 for the Steer Basin Tuff and Cougar Point Tuff XI, and ~1,000 km3 for Cougar Point Tuff XIII. These volumes exclude any associated regional ashfalls and correlation across to the north side of the plain, which has yet to be attempted. Each correlation was achieved using a combination of methods including field logging, whole rock and mineral chemistry, magnetic polarity, oxygen isotope signature and high-precision 40Ar/39Ar geochronology. The Steer Basin Tuff, Cougar Point Tuff XI and Cougar Point Tuff XIII have deposit characteristics typical of ‘Snake River (SR)-type’ volcanism: they are very dense, intensely welded and rheomorphic, unusually well sorted with scarce pumice and lithic lapilli. These features differ significantly from those of deposits from the better-known younger eruptions of Yellowstone. The ignimbrites also exhibit marked depletion in δ18O, which is known to characterise the SR-type rhyolites of the central Snake River Plain, and cumulatively represent ~1,700 km3 of low δ18O rhyolitic magma (feldspar values 2.3–2.9‰) erupted within 800,000 years. Our work reduces the total number of ignimbrites recognised in the central Snake River Plain by 6, improves the link with the ashfall record of Yellowstone hotspot volcanism and suggests that more large-volume ignimbrites await discovery through detailed correlation work amidst the vast ignimbrite record of volcanism in this bimodal large igneous province.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Anders M, Saltzman J, Hemming SJ (2009) Neogene tephra correlations in eastern Idaho and Wyoming: implications for Yellowstone hotspot-related volcanism and tectonic activity. Geol Soc Am Bull 121:837–856. doi:10.1130/B26300.1

    Article  Google Scholar 

  • Andrews GDM, Branney MJ (2011) Emplacement and rheomorphic deformation of a large, lava-like rhyolitic ignimbrite: Grey’s Landing, southern Idaho. Geol Soc Am Bull 123:725–743. doi:10.1130/B30167.1

    Article  Google Scholar 

  • Andrews GDM, Branney MJ, Bonnichsen B, McCurry M (2008) Rhyolitic ignimbrites in the Rogerson Graben, southern Snake River Plain volcanic province: volcanic stratigraphy, eruption history and basin evolution. Bull Volcanol 70:269–291. doi:10.1007/s00445-007-0139-0

    Article  Google Scholar 

  • Bachmann O, Bergantz G (2008) The magma reservoirs that feed supereruptions. Elements 4:17–21

    Article  Google Scholar 

  • Bachmann O, Dungan M, Lipman P (2002) The Fish Canyon magma body, San Juan Volcanic Field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J Petrol 43:1469–1503

    Article  Google Scholar 

  • Bailey RA (1976) Volcanism, structure, and geochronology of Long Valley caldera, Mono County, California. J Geophys Res 81:725–744

    Article  Google Scholar 

  • Baines PG, Sparks RSJ (2005) Dynamics of giant volcanic ash clouds from supervolcanic eruptions. Geophys Res Lett 32:L24808. doi:10.1029/2005GL024597

    Article  Google Scholar 

  • Bindeman IN, Watts KE, Schmitt AK, Morgan LA, Shanks PWC (2007) Voluminous low δ18O magmas in the late Miocene Heise Volcanic Field, Idaho: implications for the fate of Yellowstone hotspot calderas. Geology 35:1019–1022. doi:10.1130/G24141A.1

    Article  Google Scholar 

  • Bonnichsen B (1982) The Bruneau-Jarbidge eruptive center, South-western Idaho. In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho. Idaho Bur Min Geol Bull 26:237–254

  • Bonnichsen B, Citron GP (1982) The Cougar Point Tuff, southwestern Idaho. In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho. Idaho Bur Mines Geol Bull 26:255–281

  • Bonnichsen B, Godchaux MM (2002) Late Miocene, Pliocene, and Pleistocene geology of southwestern Idaho with emphasis on basalts in the Bruneau-Jarbidge, Twin Falls, and western Snake River Plain regions. In: Bonnichsen B, White CM, McCurry M (eds) Tectonic and magmatic evolution of the Snake River Plain Volcanic Province. Idaho Geol Surv Bull 30:233–312

  • Bonnichsen B, Leeman WP, Honjo N, McIntosh WC, Godchaux MM (2008) Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and evolution of the central Snake River Plain. Bull Volcanol 70:315–342. doi:10.1007/s00445-007-0141-6

    Article  Google Scholar 

  • Boroughs S, Wolff J, Bonnichsen B, Godchaux M, Larson P (2005) Large-volume, low-δ18O rhyolites of the central Snake River Plain, Idaho, USA. Geology 33:821–824. doi:10.1130/G21723.1

    Article  Google Scholar 

  • Branney MJ, Kokelaar BP (1992) A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol 54:504–520

    Article  Google Scholar 

  • Branney MJ, Bonnichsen B, Andrews GDM, Ellis B, Barry TL, McCurry M (2008) ‘Snake River (SR) -type’ volcanism at the Yellowstone hotspot track: distinctive products from unusual, high-temperature silicic super-eruptions. Bull Volcanol 70:293–314. doi:10.1007/s00445-007-0140-7

    Article  Google Scholar 

  • Brueseke ME, Hart WK (2008) Geology and petrology of the mid-Miocene Santa Rosa-Calico volcanic field, northern Nevada. Nevada Bureau of Mines and Geology 113, 44p

  • Camp VE (1995) Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region. Geology 23:435–438

    Google Scholar 

  • Camp VE, Hanan BB (2008) A plume-triggered delamination origin for the Columbia River basalt group. Geosph 4:480–495

    Article  Google Scholar 

  • Camp VE, Ross ME (2004) Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest. J Geophys Res 109:B08204. doi:10.1029/2003JB002838

    Article  Google Scholar 

  • Cathey HE, Nash BP (2004) The Cougar Point Tuff: implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot. J Petrol 45:27–58. doi:10.1093/petrology/egg081

    Article  Google Scholar 

  • Christiansen RL (2001) The Quaternary and Pliocene Yellowstone Plateau Volcanic Field of Wyoming, Idaho, and Montana. US Geol Sur Prof Paper 729-G:145

    Google Scholar 

  • Christiansen RL, Foulger GR, Evans JR (2002) Upper mantle origin of the Yellowstone hotspot. Geol Soc Am Bull 114:1245–1256

    Article  Google Scholar 

  • Coble MA, Mahood GA (2008) New geologic evidence for additional 16.5–15.5 Ma silicic calderas in northwest Nevada related to initial impingement of the Yellowstone hot spot. IOP Conf Series: Earth and Env Sci 3:012002

    Article  Google Scholar 

  • de Silva SL, Gosnold WD (2007) Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J Volcanol Geotherm Res 167:320–335

    Article  Google Scholar 

  • Ellis BS (2009) Rhyolitic explosive eruptions of the central Snake River Plain, Idaho: investigations of the lower Cassia Mountains succession and surrounding areas. Unpublished PhD thesis, University of Leicester, 169 p

  • Ellis B, Branney MJ (2010) Silicic phreatomagmatism in the Snake River Plain: the Deadeye Member. Bull Volcanol 72:1241–1257. doi:10.1007/s00445-010-0400-9

    Article  Google Scholar 

  • Ellis BS, Barry TL, Branney MJ, Wolff JA, Bindeman I, Wilson R, Bonnichsen B (2010) Petrologic constraints on the development of a large-volume, high temperature, silicic magma system: the Twin Falls eruptive centre, central Snake River Plain. Lithos 120:475–489. doi:10.1016/j.lithos.2010.09.008

    Article  Google Scholar 

  • Elston WE, Seager WR, Clemons RE (1975) Emory cauldron, Black Range, New Mexico, source of the Kneeling Nun Tuff. Field Conf Guide NM Geol Soc 26:283–292

    Google Scholar 

  • Evans JG (1992) Geologic map of the Dooley Mountain Quadrangle, Baker County, Oregon. US Geol Survey Geology Quad GQ-1694, scale 1:24000

  • Gardner JE, Layer PW, Rutherford MJ (2002) Phenocrysts versus xenocrysts in the youngest Toba Tuff: implications for the petrogenesis of 2800 km3 of magma. Geology 30:347–350

    Article  Google Scholar 

  • Godchaux MM, Bonnichsen B (2002) Syneruptive magma-water and posteruptive lava–water interactions in the Western Snake River Plain, Idaho, during the past 12 million years. In: Bonnichsen B, White CM, McCurry M (eds) Tectonic and magmatic evolution of the Snake River Plain Volcanic Province. Idaho Geol Surv Bull 30:387–434

  • Henry CD, Price JG, Rubin JN, Parker DF, Wolff JA, Self S, Franklin R, Barker DS (1988) Widespread, lava-like silicic volcanic rocks of Trans-Pecos Texas. Geology 16:509–512

    Article  Google Scholar 

  • Henry CD, Castor SB, McIntosh WC, Heizler MT, Cuney M, Chemillac R (2006) Timing of oldest Steens basalt magmatism from precise dating of silicic volcanic rocks, McDermitt caldera and northwest Nevada Volcanic Field. Eos Transactions AGU 87 (52)

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48:951–999. doi:10.1093/petrology/egm007

    Article  Google Scholar 

  • Honjo N, Bonnichsen B, Leeman WP, Stormer JC (1992) Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain. Bull Volcanol 54:220–237

    Google Scholar 

  • Hooper PR, Camp VE, Reidel SP, Ross ME (2007) The origin of the Columbia River Flood Basalt province: plume versus non-plume models. In: Foulger G, Jurdy D (eds) Plates, plumes and planetary processes. Geol Soc Am Spec Pap 430:635–668

  • Jellinek AM, De Paolo DJ (2003) A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull Volcanol 65:363–381

    Article  Google Scholar 

  • Jones GS, Gregory JM, Stott PA, Tett SFB, Thorpe RB (2005) An AOGCM simulation of the climate response to a volcanic super-eruption. Clim Dyn 25:725–738

    Article  Google Scholar 

  • Jordan BT, Grunder AL, Duncan RA, Deino AL (2004) Geochronology of age-progressive volcanism of the Oregon High Plains: implications for the plume interpretation of Yellowstone. J Geophys Res 109:B10202–B10221

    Article  Google Scholar 

  • Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320:500–504. doi:10.1126/science.1154339

    Article  Google Scholar 

  • Lanphere MA, Champion DE, Christiansen RL, Izett GA, Obradovich JD (2002) Revised ages for tuffs of the Yellowstone plateau volcanic field: assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event. Geol Soc Am Bull 114:559–568. doi:10.1130/0016-7606(2002)114<0559:RAFTOT>2.0.CO;2

    Article  Google Scholar 

  • Leeman WP, Annen C, Dufek J (2008) Snake River Plain–Yellowstone silicic volcanism: implications for magma genesis and magma fluxes. Geol Soc Lond Spec Publ 304:235–259. doi:10.1144/SP304.12

    Article  Google Scholar 

  • Leeman WP, Schutt DL, Hughes SS (2009) Thermal structure beneath the Snake River Plain: implications for the Yellowstone hotspot. J Volcanol Geotherm Res 188:57–67. doi:10.1016/j.jvolgeores.2009.01.034

    Article  Google Scholar 

  • Lindsay JM, de Silva S, Trumbull R, Emmermann R, Wemmer K (2001) La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas. J Volcanol Geotherm Res 106:145–173. doi:10.1093/petrology/42.3.459

    Article  Google Scholar 

  • Lipman PW (1984) The roots of ash-flow calderas in North America: windows into the tops of granitic batholiths. J Geophys Res 89:8801–8841

    Article  Google Scholar 

  • Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198–218

    Article  Google Scholar 

  • Ludwig KR (2003) Isoplot 3.00. Berkeley Geochronology Center, Spec Pub 4, 70 p

  • Manea VC, Manea M, Leeman WP, Schutt DL (2009) The influence of plume head–lithosphere interaction on magmatism associated with the Yellowstone hotspot track. J Volcanol Geotherm Res 188:68–85. doi:10.1016/j.jvolgeores.2008.12.012

    Article  Google Scholar 

  • Mark DF, Barfod D, Stuart FM, Imlach J (2009) The ARGUS multicollector noble gas mass spectrometer: performance for 40Ar/39Ar geochronology. Geochem Geophys Geosyst 10(2). doi:10.1029/2009GC002643

  • Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66:735–768. doi:10.1007/s00445-004-0355-9

    Article  Google Scholar 

  • Maughan LL, Christiansen EH, Best MG, Gromm CS, Deino AL, Tingey DG (2002) The Oligocene Lund Tuff, Great Basin, USA: a very large volume monotonous intermediate. J Volcanol Geotherm Res 113:129–157. doi:10.1016/S0377-0273(01)00256-6

    Article  Google Scholar 

  • Morgan LA, McIntosh WC (2005) Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA. Geol Soc Am Bull 117:288–306. doi:10.1130/B25519.1

    Article  Google Scholar 

  • Nash BP, Perkins ME, Christensen JN, Lee DC, Halliday AN (2006) The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas. Earth Plan Sci Lett 247:143–156. doi:10.1016/j.epsl.2006.04.030

    Article  Google Scholar 

  • Oakley WL, Link PK (2006) Geologic map of the Davis Mountain Quadrangle, Gooding and Camas Counties, Idaho. Idaho Geol Surv Technical Report T-06-6

  • Perkins ME, Nash BP (2002) Explosive silicic volcanism of the Yellowstone hotspot: the ash fall tuff record. Geol Soc Am Bull 114:367–381

    Article  Google Scholar 

  • Perkins ME, Nash WP, Brown FH, Fleck RJ (1995) Fallout tuffs of Trapper Creek Idaho—a record of Miocene explosive volcanism in the Snake River Plain volcanic province. Geol Soc Am Bull 107:1484–1506

    Article  Google Scholar 

  • Perkins ME, Williams SK, Brown FH, Nash WP, McIntosh W (1998) Sequence, age, and source of silicic fallout tuffs in middle to late Miocene basins of the northern Basin and Range Province. Geol Soc Am Bull 110:344–360. doi:10.1130/00167606(2002)114<0367:ESVOTY>2.0.CO;2

    Article  Google Scholar 

  • Pierce KL, Morgan LA (1992) The track of the Yellowstone hotspot: volcanism, faulting and uplift. In: Link PK, Kuntz MA, Platt LB (eds) Regional geology of Eastern Idaho and Western Wyoming. Geol Soc Am Mem 179:1–53

  • Rampino MR (2002) Supereruptions as a threat to civilizations on Earth-like planets. Icarus 156:562–569

    Article  Google Scholar 

  • Rampino MR, Self S (1992) Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359:50–52

    Article  Google Scholar 

  • Rose WI, Chesner CA (1987) Dispersal of ash in the great Toba eruption, 75 ka. Geology 15:913–917

    Article  Google Scholar 

  • Rose WI, Riley CM, Darteville S (2003) Sizes and shapes of 10 Ma distal fall pyroclasts in the Ogallala Group, Nebraska. J Geol 111:115–124

    Article  Google Scholar 

  • Rytuba JJ, McKee EH (1984) Peralkaline ash flow tuffs and calderas of the McDermitt volcanic field, southeast Oregon and north central Nevada. J Geophys Res 89(B10):8616–8628

    Article  Google Scholar 

  • Self S (2010) A new look at the deposits and eruption sequence of the Otowi Member, Bandelier Tuff Formation, Jemez Mountains, New Mexico. Geol Soc Am 42(5):5, Abstracts with Programs

    Google Scholar 

  • Shervais JW, Hanan BB (2008) Lithospheric topography, tilted plumes, and the track of the Snake River–Yellowstone hot spot. Tectonics 27:TC5004

    Article  Google Scholar 

  • Shervais JW, Vetter SK, Hanan BB (2006) Layered mafic sill complex beneath the eastern Snake River Plain: evidence from cyclical geochemical variations in basalt. Geology 34:365–368. doi:10.1130/G22226.1

    Article  Google Scholar 

  • Soler MM, Caffe PJ, Coira BL, Onoe AT, Kay SM (2007) Geology of the Vilama caldera: a new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene. J Volcanol Geotherm Res 164:27–53. doi:10.1016/j.jvolgeores.2007.04.002

    Article  Google Scholar 

  • Sparks RSJ, Francis PW, Hamer RD, Pankhurst RJ, O’Callaghan LO, Thorpe RS, Page R (1985) Ignimbrites of the Cerro Galan caldera, NW Argentina. J Volcanol Geotherm Res 24:205–248

    Article  Google Scholar 

  • Williams PL, Mytton JW, Covington HR (1990) Geologic map of the Stricker 1 quadrangle, Cassia, Twin Falls, and Jerome Counties, Idaho. US Geol Surv Misc Inv Series Map I-2078 scale 1:48,000

  • Wilson CJN (2001) The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview. J Volcanol Geotherm Res 112:133–174

    Article  Google Scholar 

  • Wohletz KH (1999) MAGMA: calculates IUGS volcanic rock classification, densities, and viscosities. Los Alamos National Laboratory computer code LA-CC 99-28, Los Alamos

    Google Scholar 

  • Wolff JA, Ramos FC, Hart GL, Patterson JD, Brandon AD (2008) Columbia River flood basalts from a centralized crustal magmatic system. Nat Geosci 1:177–180. doi:10.1038/ngeo124

    Article  Google Scholar 

Download references

Acknowledgments

This work represents part of the PhD of BE funded by NERC (NER/S/A/2004/12340). O isotope analyses at the U of Oregon were supported by the EAR-CAREER-0844772, and additional funding from NSF (EAR-0911457) is gratefully acknowledged. We are grateful to Scott Boroughs for providing unpublished oxygen isotope data and Henrietta Cathey and Shan de Silva for comments on an earlier draft. Thorough reviews from Barbara Nash and Jamie Gardner improved the final version, and editorial assistance from Michael Clynne is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben S. Ellis.

Additional information

Editorial responsibility: M.A. Clynne

Electronic supplementary material

Below is the link to the electronic supplementary material.

445_2011_510_MOESM1_ESM.xlsx

Electronic supplementary material 2011xxx, with datasets of pigeonite, augite and feldspar compositions, oxygen isotopes and 40Ar/39Ar geochronology is available online (XLSX 357 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ellis, B.S., Branney, M.J., Barry, T.L. et al. Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA. Bull Volcanol 74, 261–277 (2012). https://doi.org/10.1007/s00445-011-0510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0510-z

Keywords

  • Yellowstone
  • Geochemistry
  • Ignimbrite
  • Rhyolite
  • Snake River Plain