Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA

Abstract

Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO2 fluxes and quantify CO2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO2 flux were made during September–October 2010 and ranged from 85 to 1,766 g m−2 day−1. Comparative maps of soil CO2 flux were simulated and CO2 emission rates estimated from three accumulation chamber (AC) CO2 flux surveys. Least-squares inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions recovered 58–77% of the CO2 emission rates estimated based on simulated AC soil CO2 fluxes. Spatial distributions of modeled surface CO2 fluxes based on EC and AC observations showed moderate to good correspondence (R 2 = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO2 emissions over relatively large areas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allard P, Carbonelle J, Dajlevic D, Le Bronec J, Morel P, Robe MC, Maurenas JM, Faivre-Pierret R, Martin D, Sabroux JC, Zettwoog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387–391

    Article  Google Scholar 

  2. Anderson DE, Farrar CD (2001) Eddy covariance measurement of CO2 flux to the atmosphere from an area of high volcanogenic emissions, Mammoth Mountain, California. Chem Geol 177:31–42

    Article  Google Scholar 

  3. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present, and future. Glob Chang Biol 9:479–492

    Article  Google Scholar 

  4. Baubron JC, Allard P, Toutain JP (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344:51–53

    Article  Google Scholar 

  5. Chiodini G, Cioni GR, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13:543–552

    Article  Google Scholar 

  6. Deutsch CV, Journel AG (1998) GSLIB: Geostatistical software library and user’s guide. Oxford Univ. Press, New York

    Google Scholar 

  7. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105

    Article  Google Scholar 

  8. Giammanco S, Gurrieri S, Valenza M (1995) Soil CO2 degassing on Mt Etna (Sicily) during the period 1989–1993: discrimination between climatic and volcanic influences. Bull Volcanol 57:52–60

    Google Scholar 

  9. Granieri D, Avino R, Chiodini C (2010) Carbon dioxide diffuse emission from the soil: ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity. Bull Volcanol 72:103–118. doi:10.1007/s0445-009-0304-8

    Article  Google Scholar 

  10. Hammerle A, Haslwanter A, Schmitt M, Bahn M, Tappeiner U, Cernusca A, Wohlfahrt (2007) Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Boundary-Layer Meteorol 122:397–416. doi:10.1007/s10546-006-9109-x

    Article  Google Scholar 

  11. Harris R, Segall P (1987) Detection of a locked zone at depth on the Parkfield, California segment of the San Andreas fault. J Geophys Res 92:27945–27962

    Article  Google Scholar 

  12. Hernandez PA, Notsu K, Salazar JM, Mori T, Natale G, Okada H, Virgilli G, Shimoike Y, Sato M, Perez NM (2001) Carbon dioxide degassing by advective flow from Usu volcano, Japan. Science 2001:83–86

    Article  Google Scholar 

  13. Horst TW, Weil JC (1992) Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound Layer Meteorol 2:279–296

    Article  Google Scholar 

  14. Lewicki JL, Hilley GE (2011) Eddy covariance network design for mapping and quantification of surface CO2 leakage fluxes. Int J Greenhouse Gas Contr (in review)

  15. Lewicki JL, Hilley GE (2009) Eddy covariance mapping and quantification of surface CO2 leakage fluxes. Geophys Res Lett 36(21):L21802. doi:10.1029/2009GL040775

    Article  Google Scholar 

  16. Lewicki JL, Hilley GE, Tosha T, Aoyagi R, Yamamoto K, Benson SM (2007) Dynamic coupling of volcanic CO2 flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, California. Geophys Res Lett 34:L03401. doi:10.1029/2006GL028848

    Article  Google Scholar 

  17. Lewicki JL, Fischer ML, Hilley GE (2008) Six-week time series of eddy covariance CO2 flux at Mammoth Mountain, California: performance evaluation and role of meteorological forcing. J Volcanol Geotherm Res 171:178–190. doi:10.1016/j.jvolgeores.2007.11.029

    Article  Google Scholar 

  18. Lewicki JL, Hilley GE, Fischer ML, Pan L, Oldenburg CM, Dobeck L, Spangler L (2009) Eddy covariance observations of surface leakage during shallow subsurface CO2 releases. J Geophys Res 114:D12302. doi:10.1029/2008JD011297

    Article  Google Scholar 

  19. McGee KA, Gerlach TM (1998) Annual cycle of magmatic CO2 in a tree-kill soil at Mammoth Mountain, California: implications for soil acidification. Geology 26:463–466

    Article  Google Scholar 

  20. McGee KA, Gerlach TM, Kessler R, Doukas MP (2000) Geochemical evidence for a magmatic CO2 degassing event at Mammoth Mountain, California, September – December 1997. J Geophys Res 105:8447–8456

    Article  Google Scholar 

  21. Rogie JD, Kerrick DM, Sorey ML, Chiodini G, Galloway DL (2001) Dynamics of carbon dioxide emission at Mammoth Mountain, California. Earth Planet Sci Lett 188:535–541

    Article  Google Scholar 

  22. Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric For Meteorol 87(2–3):179–200

    Article  Google Scholar 

  23. Thomas C, Foken T (2002) Re-evaluation of integral turbulence characteristics and their parameterizations. Proceedings of the 15th Symposium on Boundary Layers and Turbulence, Am Meteorol Soc, Wageningen, The Netherlands:129–132

  24. Toutain J-P, Sortino F, Baubron J-C, Richon P, Surono SS, Nonell A (2009) Structure and CO2 budget of Merapi volcano during inter-eruptive periods. Bull Volcanol 71:815–826. doi:10.1007/s00445-009-0266-x

    Article  Google Scholar 

  25. Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain part 1. Canopy and local effects. Agric For Meteorol 119:1–21

    Article  Google Scholar 

  26. Turnipseed AA, Anderson DE, Burns S, Blanken PD, Monson RK (2004) Airflows and turbulent flux measurements in mountainous terrain part 2. Mesoscale effects. Agric For Meteorol 125:187–205

    Article  Google Scholar 

  27. Werner C, Wyngaard JC, Brantley SL (2000) Eddy-correlation measurement of hydrothermal gases. Geophys Res Lett 27:2925–2928

    Article  Google Scholar 

  28. Werner C, Chiodini G, Voigt D, Caliro S, Avino R, Russo M, Brombach T, Wyngaard J, Brantley S (2003) Monitoring volcanic hazard using eddy covariance at Solfatara volcano, Naples, Italy. Earth Planet Sci Lett 210:561–577

    Article  Google Scholar 

  29. Williams-Jones G, Stix J, Heiligmann M, Charland A, Sherwood Lollar B, Arner N, Garzón G, Barquero J, Fernandez E (2000) A model of diffuse degassing at three subduction-related volcanoes. Bull Volcanol 62:130–142

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to G. Williams-Jones and A. Harris for constructive reviews of this manuscript and thank HP Schmid for the Flux Source Area Model source code. This work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, NETL, of the US Dept. of Energy under Contract No. DE-AC02-05CH11231.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Lewicki.

Additional information

Editorial responsibility: A. Harris

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lewicki, J.L., Hilley, G.E., Dobeck, L. et al. Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA. Bull Volcanol 74, 135–141 (2012). https://doi.org/10.1007/s00445-011-0503-y

Download citation

Keywords

  • Eddy covariance
  • Carbon dioxide flux
  • Volcano monitoring
  • Accumulation chamber
  • Least-squares inversion