Advertisement

Bulletin of Volcanology

, Volume 74, Issue 1, pp 119–134 | Cite as

Geochemical model of a magmatic–hydrothermal system at the Lastarria volcano, northern Chile

  • Felipe Aguilera
  • F. Tassi
  • T. Darrah
  • S. Moune
  • O. Vaselli
Research Article

Abstract

Lastarria volcano (25°10′ S, 68°31′ W; 5,697 m above sea level), located in the Central Andes Volcanic Zone (northern Chile), is characterized by four distinct fumarolic fields with outlet temperatures ranging between 80°C and 408°C as measured between May 2006–March 2008 and April–June 2009. Fumarolic gasses contain significant concentrations of high temperature gas compounds (i.e., SO2, HCl, HF, H2, and CO), and isotopic ratios (3He/4He, δ13C–CO2, δ18O–H2O, and δD–H2O) diagnostic of magmatic gas sources. Gas equilibria systematics, in both the H2O-H2-CO2-CO-CH4 and alkane–alkene C3 system, suggest that Lastarria fumarolic gasses emanate from a superheated vapor that is later cooled and condensed at relatively shallow depths. This two-stage process inhibits the formation of a continuous aquifer (e.g., horizontal liquid layer) at relatively shallow depth. Recent developments in the magmatic gas system may have enhanced the transfer and release of heat causing shallow aquifer vaporization. The consequent pressure increase and aquifer vaporization likely triggered the inflation events beginning in 2003 at the Lastarria volcano.

Keywords

Lastarria volcano Fumarolic gas Ground deformation Fluid geochemistry Andean volcanics 

Notes

Acknowledgments

This research was partially financed by D-21050592 CONICYT grant (Government of Chile) (F. Aguilera), the Laboratories of Fluid and Rock Geochemistry of the Department of Earth Sciences and CNR-IGG of Florence (Resp. F. Tassi and O. Vaselli) and Institut de Recherche pour le Développement (IRD-France) (Resp. S. Moune).

Y. Taran, H. Shinohara, P. Delmelle, R. Cioni and two anonymous referees are warmly thanked for their useful and helpful suggestions during the revision of an early version of the manuscript.

The authors wish to express their gratitude to Jaime Llanos (Inorganic Chemical Laboratory-UCN-Chile) for facilities in the samples preparation, to Sylvain Bonvalot (BGI-France) and Joel Ruch (GFZ-Germany/U. Rome 3-Italy) to invite us to participate in the multidisciplinary studies for Lazufre system, to Jorge Lemp (SERNAGEOMIN) for their help during the first sampling campaign, and Franklin Calle, Javier Pastén and Flavio Marín (UCN-Chile) for their help during the second sampling campaigns. Special thanks to Ejército de Chile for its indispensable help and for facilitated us its “house” during the third and fourth campaigns.

Supplementary material

445_2011_489_MOESM1_ESM.doc (22 kb)
ESM 1 (DOC 21 kb)

References

  1. Aguilera F (2008) Origin and evolution of fluid in volcanoes, geothermal fields and thermal discharges of Central Volcanic Zone in northern Chile (17º43′ S–25º10′ S). Ph.D. thesis, Univ. Catol. Norte, Chile (in Spanish).Google Scholar
  2. Anderssohn J, Motagh M, Walter T, Rosenau M, Kaufmann H, Oncken O (2009) Surface deformation time series and source modeling for a volcanic complex system based on satellite wide swath and image mode interferometry: the Lazufre system, central Andes. Rem Sens Environ 113:2062–2075CrossRefGoogle Scholar
  3. Ballentine CJ, Burnard PG (2002) Production, release, and transport of noble gases. In: Rosso JJ, Ribbe PH (eds) Review in mineralogy and geochemistry: noble gases in geochemistry and cosmochemistry. Geological Society of America and Mineralogical Society of America, Washington, D.CGoogle Scholar
  4. Bonvalot S, Froger JL, Remy D, Bondoux F, Gabalda G, Legrand D, Pavez A, Robin C (2006) Results and perspectives from InSAR and geodetic surveys. XI Chilean Geologic Congress 7–11 August, Antofagasta, Chile, pp. 417–420Google Scholar
  5. Brombach T, Caliro S, Chiodini G, Fiebig J, Hunziker J, Raco B (2003) Geochemical evidence for mixing of magmatic fluids with seawater, Nisyros hydrothermal system, Greece. Bull Volcanol 65:505–516CrossRefGoogle Scholar
  6. Capaccioni B, Mangani F (2001) Monitoring of active but quiescent volcanoes using light hydrocarbon distribution in volcanic gases: the results of 4 years of discontinuous monitoring in the Campi Flegrei (Italy). Earth Planet Sci Lett 188:543–555CrossRefGoogle Scholar
  7. Capaccioni B, Taran Y, Tassi F, Vaselli O, Mangani F, Macias JL (2004) Source conditions and degradation processes of light hydrocarbons in volcanic gases: an example from El Chichón volcano (Chiapas State, Mexico). Chem Geol 20:81–96CrossRefGoogle Scholar
  8. Capasso G, Favara R, Francofonte S, Inguaggiato S (1999) Chemical and isotopic variations in fumarolic discharge and thermal waters at Vulcano Island (Aeolian Islands, Italy) during 1996: evidence of resumed volcanic activity. J Volcanol Geotherm Res 88:167–175CrossRefGoogle Scholar
  9. Casertano L (1963) General characteristics of active Andean volcanoes and a summary of their activities during recent centurias. Bull Seism Soc Am 53:1415–1433Google Scholar
  10. Chaffaut I, Coudrain-Ribstein A, Michelot JL, Pouyaud B (1998) Précipitations d’altitude du Nord-Chile, origine des sources de vapeur et données isotopiques. Bull Inst Fr Etudes Andines 27:367–384Google Scholar
  11. Chiodini G, Marini L (1998) Hydrothermal gas equilibria: the H2O-H2-CO2-CO-CH4 system. Geochim Cosmochim Acta 62:2673–2687CrossRefGoogle Scholar
  12. Chiodini G, Allard P, Caliro S, Parello F (2000) 18O exchange between steam and carbon dioxide in volcanic and hydrothermal gases: implications for the source of water. Geochim Cosmochim Acta 64:2477–2488CrossRefGoogle Scholar
  13. Chiodini G, Marini L, Russo M (2001) Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy. Geochim Cosmochim Acta 13:2129–2147CrossRefGoogle Scholar
  14. Coleman ML, Shepherd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995CrossRefGoogle Scholar
  15. Craig H, Lupton JE (1976) Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet Sci Lett 31:369–385CrossRefGoogle Scholar
  16. Craig H, Lupton JE, Horibe Y (1978) A mantle helium component in circum-Pacific volcanic gases: Hakone, the Marianas, and Mt. Lassen. In: Alexander EC, Ozima M (eds) Terrestrial rare gases. Japan Sci Soc Press, Tokyo, p 316Google Scholar
  17. Dunai TJ, Porcelli D (2002) Storage and transport of noble gases in the subcontinental lithosphere. Rev Mineral Geochem 47:371–409CrossRefGoogle Scholar
  18. Epstein S, Mayeda TK (1953) Variation of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  19. Farley KA, Poreda RJ (1993) Mantle neon and atmospheric contamination. Earth Planet Sci Lett 114:325–339CrossRefGoogle Scholar
  20. Fischer TP, Sturchio NC, Stix J, Arehart GB, Counce D, Williams SN (1997) The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras volcano, Colombia. J Volcanol Geoth Res 77:229–253CrossRefGoogle Scholar
  21. Fischer TP, Giggenbach WF, Sano Y, Williams SN (1998) Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands. Earth Planet Sci Lett 160:81–96CrossRefGoogle Scholar
  22. Froger JL, Remy D, Bonvalot S, Legrand D (2007) Two scales of inflation at Lastarria-Cordon del Azufre volcanic complex, central Andes, revealed from ASAR-ENVISAT interferometric data. Earth Planet Sci Lett 255:148–163CrossRefGoogle Scholar
  23. Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161CrossRefGoogle Scholar
  24. Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510CrossRefGoogle Scholar
  25. Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa RW and Tilling RI (eds) IAVCEI_UNESCO: monitoring and mitigation of volcano hazards. pp. 221–256Google Scholar
  26. Giggenbach WF, Goguel RL (1989) Method for the collection and analysis of geothermal and volcanic water and gas samples. NZ-DSIR Report, CD 2387, 53Google Scholar
  27. Giggenbach W, Matsuo S (1991) Evaluation of results from second and third IAVCEI field workshops on volcanic gases, Mt. Usu, Japan, and White Island, New Zealand. Appl Geochem 6:125–141CrossRefGoogle Scholar
  28. Giggenbach WF, Poreda RJ (1993) Helium isotopic and chemical composition of gases from volcanic hydrothermal systems in the Philippines. Geothermics 22:369–380CrossRefGoogle Scholar
  29. Giggenbach WF, Sano Y, Wakita H (1993) Isotopic composition of helium, CO2, and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim Cosmochim Acta 57:3427–3455CrossRefGoogle Scholar
  30. González-Ferrán O (1995) Volcanes de Chile. Instituto Geográfico Militar, SantiagoGoogle Scholar
  31. Graham DW (2002) Noble gas isotope geochemistry of mid ocean and ocean island basalts: characterization of mantle source reservoirs. Rev Mineral Geochem 47:247–317CrossRefGoogle Scholar
  32. Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem 47:319–370CrossRefGoogle Scholar
  33. Hoefs J (1997) Stable isotope geochemistry. 4th ed. Springer, Berlin, p 201Google Scholar
  34. Hu RZ, Burnard PG, Turner G, Bi XW (1998) Helium and argon systematic in fluid inclusions of Machangqing copper deposit in west Yunnan province, China. Chem Geol 146:55–63CrossRefGoogle Scholar
  35. Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62CrossRefGoogle Scholar
  36. Lewicki J, Fischer T, Williams SN (2000) Chemical and isotopic compositions of fluids at Cumbal volcano, Colombia: evidence for magmatic contribution. Bull Volcanol 62:347–361CrossRefGoogle Scholar
  37. Lux G (1987) The behavior of noble gases in silicate liquids: solution, diffusion, bubbles, and surface effects, with applications to natural samples. Geochim Cosmochim Acta 51:1549–1560CrossRefGoogle Scholar
  38. Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. In: Fyfe WS (ed) Development in geochemistry. Elsevier, Amsterdam, pp 1–273Google Scholar
  39. Marty B (1995) Nitrogen content of the mantle inferred from N2-Ar correlation in oceanic basalts. Nature 377:326–329CrossRefGoogle Scholar
  40. Marty B, Jambon A (1987) C/3He fluxes from the solid Earth: implications for carbon geodynamics. Earth Planet Sci Lett 83:16–26CrossRefGoogle Scholar
  41. Mizutani Y, Hayashi S, Sugiura T (1986) Chemical and isotopic composition of fumarolic gases from Kuju–Iwojima, Japan. Geochem J 20:253–264CrossRefGoogle Scholar
  42. Montegrossi G, Tassi F, Vaselli O, Buccianti A, Garofalo K (2001) Sulfur species in volcanic gases. Anal Chem 73:3709–3715CrossRefGoogle Scholar
  43. Motyka RJ, Poreda RJ, Jeffrey AWA (1989) Geochemistry, isotopic composition, and origin of fluids emanating from mud volcanoes in the copper river basin, Alaska. Geocehmica et Cosmochimica Acta 53:29–41CrossRefGoogle Scholar
  44. Nagao K, Takahashi E (1993) Noble gases in the mantle wedge and lower crust: an inference from the isotopic analyses of xenolits from Oki-Dogo and Ichinimegata, Japan. Geochem J 27:229–240CrossRefGoogle Scholar
  45. Naranjo J (1985) Sulphur flows at Lastarria volcano in the North Chilean Andes. Nature 313:778–780CrossRefGoogle Scholar
  46. Naranjo J (1986) Geology and evolution of the Lastarria volcanic complex, north Chilean Andes. MS Thesis, The Open University, Milton KeynesGoogle Scholar
  47. Naranjo J (1988) Coladas de azufre en los volcanes Lastarria y Bayo en el norte de Chile: Reología, génesis e importancia en geología planetaria. Rev Geol Chile 15:3–12Google Scholar
  48. Naranjo J (1992) Chemistry and petrological evolution of the Lastarria volcanic complex in north Chilean Andes. Geol Mag 129:723–740CrossRefGoogle Scholar
  49. Naranjo J, Cornejo P (1992) Hoja Salar de la Isla. Serv Nac Geol Min, 72Google Scholar
  50. Ozima M, Podosek FA (2002) Noble gas geochemistry, 2nd edn. Cambridge University Press, Cambridge, p 286Google Scholar
  51. Patino LC, Carr MJ, Feigenson MD (2000) Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138:265–283CrossRefGoogle Scholar
  52. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394CrossRefGoogle Scholar
  53. Poorter RP, Varekamp JC, Poreda RJ, Bergen MJ, Kruelen R (1991) Chemical and isotopic compositions of volcanic gases from the east Sunda and Banda arca, Indonesia. Geochim Cosmochim Acta 55:3795–3807CrossRefGoogle Scholar
  54. Poreda R, Craig H (1989) Helium isotope ratios in circum-Pacific volcanic arcs. Nature 338:473–478CrossRefGoogle Scholar
  55. Poreda RJ, Farley KA (1992) Rare-gases in Samoan xenoliths. Earth Planet Sci Lett 113:129–144CrossRefGoogle Scholar
  56. Poreda RJ, Jeffrey AWA, Kaplan IR, Craig H (1988) Magmatic helium in subduction zone natural gases. Chem Geol 71:199–210CrossRefGoogle Scholar
  57. Pritchard ME, Simons M (2002) A satellite geodetic survey of large scale deformation of volcanic centres in the central Andes. Nature 418:167–170CrossRefGoogle Scholar
  58. Pritchard ME, Simons M (2004) An InSAR-based survey of volcanic deformation in the central Andes. Geochem Geophys Geosys 5:Q02002. doi: 10.1029/2003GC000610 CrossRefGoogle Scholar
  59. Risacher F, Alonso H (2001) Geochemistry of ash leachates from the 1993 Lascar eruption, northern Chile. Implication for recycling of ancient evaporites. J Volcanol Geoth Res 109:319–337CrossRefGoogle Scholar
  60. Ruch J, Anderssohn J, Walter TR, Motagh M (2008) Caldera-scale inflation of the Lazufre volcanic area, South America: evidence from InSAR. J Volcanol Geoth Res 137:337–344CrossRefGoogle Scholar
  61. Sano Y, Marty B (1995) Origin of carbon in fumarolic gases from island arcs. Chem Geol 119:265–274CrossRefGoogle Scholar
  62. Sano Y, Gamo T, Williams S (1997) Secular variations of helium and carbon isotopes at Galeras volcano, Colombia. J Volcanol Geoth Res 77:255–265CrossRefGoogle Scholar
  63. Sano Y, Nishio Y, Sasaki S, Gamo T, Nagao H (1998) Helium and carbon isotope systematics at Ontake volcano, Japan. J Geophys Res 103:22,863–23,873CrossRefGoogle Scholar
  64. Sano Y, Naoto T, Nishio Y, Fischer T, Williams S (2001) Volcanic flux of nitrogen from the Earth. Chem Geol 171:263–271CrossRefGoogle Scholar
  65. Sarda PH, Moreira M (2002) Vesiculation and vesicle loss in mid-ocean ridge basalt glasses: He, Ne, Ar elemental fractionation and pressure influence. Geochim Cosmochim Acta 66:1449–1458CrossRefGoogle Scholar
  66. Seewald JS (1994) Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions. Nature 370:285–287CrossRefGoogle Scholar
  67. Shaw AM, Hilton DR, Fischer TP, Walker JA, Alvarado GE (2003) Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sci Lett 214:499–513CrossRefGoogle Scholar
  68. Snyder G, Poreda R, Hunt A, Fehn U (2001) Regional variations in volatile composition: isotopic evidence for carbonate recycling in the Central American volcanic arc. Geochem Geophys Geosyst 2. doi: 10.1029/2001GC000163
  69. Snyder G, Poreda R, Fehn U, Hunt A (2003) Sources of nitrogen and methane in Central American geothermal settings: noble gas and 129I evidence for crustal and magmatic volatile components. Geochem Geophys Geosyst 4. doi: 10.1029/2002GC000363
  70. Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geochim Res 108:303–341CrossRefGoogle Scholar
  71. Taran YA, Giggenbach WF (2003) Geochemistry of light hydrocarbons in subduction-related volcanic and hydrothermal fluids. In: S.F. Simmons, I.J. Graham (eds.), Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the Earth. Littleton, Colorado. Soc Econ Geol Spec Issue, pp. 61–74Google Scholar
  72. Taran YA, Giggenbach WF (2004) Evidence for metastable equilibrium between hydrocarbons in volcanic gases. In: Water–rock interaction R.B. Wanty and R.R. Seal II (eds) pp. 193–195.Google Scholar
  73. Taran YA, Pokrovsky BG, Esikov AD (1989) Deuterium and oxygen-18 in fumarolic steam and amphiboles from some Kamchatka volcanoes: “andesitic waters”. Doklady Akademii nauk SSSR 304:440–443Google Scholar
  74. Taran YA, Hedenquist JW, Korzhinsky MA, Tkachenko SI, Shmulowich KI (1995) Geochemistry of magmatic gases from Kudryavy volcano, Kuril Islands. Geochim Cosmochim Acta 59:1749–1761CrossRefGoogle Scholar
  75. Taran YA, Connor CB, Shapar VN, Ovsyannikov AA, Bilichenko AA (1997) Fumarolic activity of Avachinsky and Koryaksky volcanoes, Kamchatka, from 1993 to 1994. Bull Volcanol 58:441–448CrossRefGoogle Scholar
  76. Tassi F, Montegrossi G, Vaselli O (2004) Metodologie di campionamento ed analisi di fasi gassose. CNR-IGG institute of Geosciences and Earth Resourches, Unit of Florence, Internal Report n. 1/2003 pp. 17. (in Italian with English abstract).Google Scholar
  77. Tassi F, Vaselli O, Capaccioni B, Giolito C, Duarte E, Fernandez E, Minissale A, Magro G (2005) The hydrothermal-volcanic system of Rincon de la Vieja volcano (Costa Rica): a combined (inorganic and organic) geochemical approach to understanding the origin of the fluid discharges and its possible application to volcanic surveillance. J Volcanol Geoth Res 148:315–333CrossRefGoogle Scholar
  78. Tassi F, Vaselli O, Capaccioni B, Montegrossi G, Barahona F, Caprai A (2007) Scrubbing processes and chemical equilibria controlling the composition of light hydrocarbons in natural gas discharges: an example from the geothermal fields of Salvador. Geochem Geophys Geosyst 8:Q05008. doi: 10.1029/2006GC001487 CrossRefGoogle Scholar
  79. Tassi F, Aguilera F, Vaselli O, Medina E, Tedesco D, Delgado Huertas A, Poreda R, Kojima S (2009) The magmatic- and hydrothermal-dominated fumarolic system at the Active Crater of Lascar volcano, northern Chile. Bull Volcanol 71:171–183. doi: 10.1007/s00445-008-0216-z CrossRefGoogle Scholar
  80. Taylor H (1986) Magmatic volatiles: isotopic variation of C, H and S. In: Taylor HP, O’Neil JR (eds). Stable isotopes in high temperature geological processes. Rev Mineral 16:185–225Google Scholar
  81. Tedesco D, Nagao K (1996) Radiogenic 4He, 21Ne and 40Ar in fumarolic gases at Vulcano island: implication for the subducted African continental plate beneath Italy. Earth Planet Sci Lett 144:517–528CrossRefGoogle Scholar
  82. Tedesco D, Scarsi P (1999) Intensive gas sampling of noble gases and carbon at Vulcano Island (southern Italy). J Geophys Res 104:10499–10510CrossRefGoogle Scholar
  83. Tedesco D, Tassi F, Vaselli O, Poreda RJ, Darrah T, Cuoco E, Yalire MM (2010) Gas isotopic signatures (He, C and Ar) in the Lake Kivu region (western branch of the East African Rift system): geodynamic and volcanological implications. J Geophys Res 115:B01205. doi: 10.1029/2008JB006227 CrossRefGoogle Scholar
  84. Torgersen TB, Kennedy M, Hiyagon H (1988) Argon accumulation and the crustal degassing flux of 40Ar in the Great Artesian Basin, Australia. Earth Planet Sci Lett 92:43–59CrossRefGoogle Scholar
  85. Trumbull RB, Wittenbrink R, Hahne K, Emmermann R, Büsch W, Gerstenberger H, Siebel W (1999) Evidence for late Miocene to recent contamination of arc andesites by crustal melts in the Chilean Andes (25–26°S) and its geodynamic implications. J S Am Earth Sci 12:135–155CrossRefGoogle Scholar
  86. van Soest MC, Hilton DR, Kreulen R (1998) Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochim Cosmochim Acta 19–20:3323–3335CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Felipe Aguilera
    • 1
  • F. Tassi
    • 2
    • 3
  • T. Darrah
    • 4
    • 5
  • S. Moune
    • 6
  • O. Vaselli
    • 2
    • 3
  1. 1.Departamento de GeologíaUniversidad de AtacamaCopiapóChile
  2. 2.Department of Earth SciencesUniversity of FlorenceFlorenceItaly
  3. 3.CNR-IGG Institute of Geosciences and Earth ResourcesFlorenceItaly
  4. 4.Department of Earth and Environmental SciencesUniversity of RochesterRochesterUSA
  5. 5.Department Environmental, Earth and Ocean SciencesUniversity of Massachusetts-BostonBostonUSA
  6. 6.Laboratoire Magmas et Volcans, Observatoire de Physique du Globe de Clermont-FerrandUniversité Blaise PascalClermont-Ferrand CedexFrance

Personalised recommendations