Skip to main content
Log in

Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

Bulletin of Volcanology Aims and scope Submit manuscript

Cite this article

Abstract

We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth’s volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Barnes WL, Pagano TS, Salomonson VV (1998) Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans Geosci Remote Sens 36(4):1088–1100

    Article  Google Scholar 

  • Bonneville A, Gouze P (1992) Thermal survey of Mount Etna volcano from space. Geophys Res Lett 19(7):725–728

    Article  Google Scholar 

  • Cuomo V, Lasaponara R, Tramutoli V (2001) Evaluation of a new satellite-based method for forest fire detection. Int J Remote Sens 22(9):1799–1826

    Google Scholar 

  • Dehn J, Dean K, Engle K (2000) Thermal monitoring of North Pacific volcanoes from space. Geology 28(8):755

    Article  Google Scholar 

  • Dehn J, Dean KG, Engle K, Izbekov P (2002) Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano. Bull Volcanol 64(8):525–534

    Article  Google Scholar 

  • Di Bello G, Filizzola C, Lacava T, Marchese F, Pergola N, Pietrapertosa C, Piscitelli S, Scaffidi I, Tramutoli V (2004) Robust satellite techniques for volcanic and seismic hazards monitoring. Ann Geophys 47(1):49–64

    Google Scholar 

  • Flynn L, Wright R, Garbeil H, Harris A, Pilger E (2002) A global thermal alert system using MODIS: initial results from 2000–2001. Adv Environ Monit Model 1(1):37–69

    Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87(2–3):273–282

    Article  Google Scholar 

  • Harris AJL, Stevenson DS (1997) Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data. J Volcanol Geotherm Res 76:175–198

    Article  Google Scholar 

  • Harris AJL, Vaughan RA, Rothery DA (1995) Volcano detection and monitoring using AVHRR data: the Krafla eruption, 1984. Int J Remote Sens 16:1001–1020

    Article  Google Scholar 

  • Harris AJL, Pilger E, Flynn LP, Garbeil H, Mouginis-Mark PJ, Kauahikaua J, Thornber C (2001) Automated, high temporal resolution thermal analysis of Kilauea volcano, Hawai‘i, using GOES satellite data. Int J Remote Sens 22(6):945–967

    Article  Google Scholar 

  • Heliker C, Swanson DA, Takahashi TJ (2003) The Pu‘u ‘Ö‘ö-Küpaianaha eruption of Kïlauea volcano, Hawai‘i: the first 20 Years. USGS Prof Paper 1676

  • Higgins J, Harris AJL (1997) VAST: a program to locate and analyse volcanic thermal anomalies automatically from remotely sensed data. Comput Geosci 23:627–645

    Article  Google Scholar 

  • Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res 103(D24):32215–32238

    Article  Google Scholar 

  • Lagios E, Vassilopoulou S, Sakkas V, Dietrich V, Damiata BN, Ganas A (2007) Testing satellite and ground thermal imaging of low-temperature fumarolic fields: the dormant Nisyros Volcano (Greece). ISPRS J Photogramm Remote Sens 62(6):447–460

    Article  Google Scholar 

  • Mouginis-Mark PJ, Francis PW, Friedman T, Garbeil H, Gradie J, Self S, Wilson L, Crisp JA, Glaze L, Jones K, Kahle AB, Pieri DC, Zebker H, Krueger A, Walter L, Wood C, Rose W, Adams J, Wolff R (1991) Analysis of active volcanoes from the earth observing system. Remote Sens Environ 36:1–12

    Article  Google Scholar 

  • Patrick M, Dean K, Dehn J (2004) Active mud volcanism observed with Landsat 7 ETM+. J Volcanol Geotherm Res 131(3–4):307–320

    Article  Google Scholar 

  • Pergola N, Pietrapertosa C, Lacava T, Tramutoli V (2001) Robust satellite techniques for volcanic eruptions monitoring. Ann Geophys 44(2):167–177

    Google Scholar 

  • Pergola N, Marchese F, Tramutoli V (2004) Automated detection of thermal features of active volcanoes by means of infrared AVHRR records. Remote Sens Environ 93:311–327

    Article  Google Scholar 

  • Pergola N, Marchese F, Tramutoli V, Filizzola C, Ciampa M (2008) Advanced satellite technique for volcanic activity monitoring and early warning. Ann Geophys 51(1):287–301

    Google Scholar 

  • Pergola N, Giuseppe DA, Lisi M, Marchese F, Mazzeo G, Tramutoli V (2009) Time domain analysis of robust satellite techniques (RST) for near real-time monitoring of active volcanoes and thermal precursor identification. Phys Chem Earth 34:380–385

    Google Scholar 

  • Pieri D, Abrams M (2004) ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit. J Volcanol Geotherm Res 135(1–2):13–28

    Article  Google Scholar 

  • Pieri D, Abrams M (2005) ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia. Remote Sens Environ 99(1–2):84–94

    Article  Google Scholar 

  • Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riédi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41(2):459–473

    Article  Google Scholar 

  • Prins E, Feltz J, Menzel W, Ward D (1998) An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J Geophys Res 103(D24):31821–31835

    Article  Google Scholar 

  • Roberts G, Wooster M (2008) Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE Trans Geosci Remote Sens 46(4 Part 2):1200–1218

    Article  Google Scholar 

  • Rothery DA, Thorne MT, Flynn L (2003) MODIS thermal alerts in Britain and the North Sea during the first half of 2001. Int J Remote Sens 24(4):817–826

    Article  Google Scholar 

  • Tramutoli V (1998) Robust AVHRR Techniques (RAT) for environmental monitoring theory and applications. In: Checchi G, Zilioli E (eds) Earth surf remote sens II. SPIE, Barcelona, Spain, pp 101–113

    Google Scholar 

  • Tramutoli V, Di Bello G, Pergola N, Piscitelli S (2001) Robust satellite techniques for remote sensing of seismically active areas. Ann Geophys 44(2):295–312

    Google Scholar 

  • Trunk L, Bernard A (2008) Investigating crater lake warming using ASTER thermal imagery: case studies at Ruapehu, Po·s, Kawah Ijen, and CopahuÈ Volcanoes. J Volcanol Geotherm Res 178(2):259–270

    Article  Google Scholar 

  • Trusdell FA, Moore RB, Sako M, White RA, Koyanagi SK, Chong R, Camacho JT (2005) The 2003 eruption of Anatahan volcano, Commonwealth of the Northern Mariana Islands: chronology, volcanology, and deformation. J Volcanol Geotherm Res 146(1–3):184–207

    Article  Google Scholar 

  • Webley P, Wooster M, Strauch W, Saballos J, Dill K, Stephenson P, Stephenson J, Wolf E, Matias O (2008) Experiences from near-real-time satellite-based volcano monitoring in Central America: case studies at Fuego, Guatemala. Int J Remote Sens 29(22):6621–6646

    Article  Google Scholar 

  • Wooster MJ (2001) Long-term infrared surveillance of Lascar Volcano: contrasting activity cycles and cooling pyroclastics. Geophys Res Lett 28(5):847–850

    Article  Google Scholar 

  • Wooster MJ, Wright R, Blake S, Rothery DA (1997) Cooling mechanisms and an approximate thermal budget for the 1991–1993 Mount Etna lava flow. Geophys Res Lett 24:3277–3280

    Article  Google Scholar 

  • Wright R, De La Cruz-Reyna S, Harris AJL, Flynn LP, Gomez-Palacios JJ (2002a) Infrared satellite monitoring at Popocatepetl: explosions, exhalations, and cycles of dome growth. J Geophys Res 107(B8):2153

    Article  Google Scholar 

  • Wright R, Flynn L, Garbeil H, Harris A, Pilger E (2002b) Automated volcanic eruption detection using MODIS. Remote Sens Environ 82:135–155

    Article  Google Scholar 

  • Wright R, Flynn L, Garbeil H, Harris A, Pilger E (2004) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 153:29–49

    Article  Google Scholar 

  • Wright R, Carn SA, Flynn LP (2005) A satellite chronology of the May-June 2003 eruption of Anatahan volcano. J Volcanol Geotherm Res 146:102–116

    Article  Google Scholar 

  • Xiong X, Wu A, Caos C (2008) On-orbit calibration and inter-comparison of Terra and Aqua MODIS surface temperature spectral bands. Int J Remote Sens 29(17–18):5347–5359

    Article  Google Scholar 

  • Xu W, Wooster M, Roberts G, Freeborn P (2010) New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sens Environ 114(9):1876–1895

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by NASA grant NNX08AF08G and the MASINT Consortium to RW. The authors thank Harold Garbeil for writing the georeferencing software used in this work. The manuscript was improved by thoughtful reviews from Matthew Patrick, Martin Wooster, and Andrew Harris. This is HIGP publication 1876 and SOEST publication 8057.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. C. Koeppen or R. Wright.

Additional information

Editorial responsibility: A. Harris

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koeppen, W.C., Pilger, E. & Wright, R. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach. Bull Volcanol 73, 577–593 (2011). https://doi.org/10.1007/s00445-010-0427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-010-0427-y

Keywords

Navigation