Advertisement

Bulletin of Volcanology

, Volume 73, Issue 5, pp 531–542 | Cite as

First 13C/12C isotopic characterisation of volcanic plume CO2

  • Giovanni Chiodini
  • Stefano CaliroEmail author
  • Alessandro Aiuppa
  • Rosario Avino
  • Domenico Granieri
  • Roberto Moretti
  • Francesco Parello
Research Article

Abstract

We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.

Keywords

Volcanic plume Carbon isotope Etna Magmatic degassing 

Notes

Acknowledgements

We thank two anonymous reviewers for their thoughtful reviews and valuable comments to the manuscript. G. Giudice, M. Liuzzo and N. Bobrowski (INGV-Pa) are acknowledged for support in the field.

References

  1. Aiuppa A, Federico C, Giudice G, Gurrieri S, Liuzzo M, Shinohara H, Favara R, Valenza M (2006) Rates of carbon dioxide plume degassing from Mount Etna volcano. J Geophys Res 111:B09207. doi: 10.1029/2006JB004307 CrossRefGoogle Scholar
  2. Aiuppa A, Moretti R, Federico C, Giudice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruption by real time evaluation of volcanic gas composition. Geology 35:1115–1118. doi: 10.1130/G24149A CrossRefGoogle Scholar
  3. Aiuppa A, Giudice G, Gurrieri S, Liuzzo M, Burton M, Caltabiano T, McGonigle AJS, Salerno G, Shinohara H, Valenza M (2008) Total volatile flux from Mount Etna. Geophys Res Lett 35:L24302. doi: 10.1029/2008GL035871 CrossRefGoogle Scholar
  4. Aiuppa A, Burton M, Caltabiano T, Giudice G, Gurrieri S, Liuzzo M, Salerno GG, Murè F (2009a) Magmatic CO2 gas emissions from Stromboli volcano (Italy). Eos Trans. AGU 90(52), Fall Meet Suppl, V23H-06Google Scholar
  5. Aiuppa A, Federico C, Giudice G, Giuffrida G, Guida R, Gurrieri S, Liuzzo M, Moretti R, Papale P (2009b) The 2007 eruption of Stromboli volcano: Insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. J Volcanol Geotherm Res 182:221–230. doi: 10.1016/j.jvolgeores.2008.09.013 CrossRefGoogle Scholar
  6. Allard P (1983) The origin of water, carbon, sulphur, nitrogen and rare gases in volcanic exhalations; evidence from isotope geochemistry. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier, Amsterdam, pp 337–386Google Scholar
  7. Allard P, Baubron JVC, Le Bronec J, Luongo G, Maurenas JM, Pece R, Robe MC, Tedesco D, Zettwoog P (1988) Geochemical survey of volcanic gas soil emanations and eruption forecasting: The Vesuvius case. Italy, In Proceedings of the Kagoshima International Conference on VolcanoesGoogle Scholar
  8. Allard P, Carbonelle J, Dajlevic D, Le Bronec J, Morel P, Robe MC, Maurenas JM, Faivre-Pierret R, Martin D, Sabroux JC, Zettwoog P (1991a) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387–391CrossRefGoogle Scholar
  9. Allard P, Maiorani A, Tedesco D, Cortecci G, Turi B (1991b) Isotopic study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei caldera. J Volcanol Geotherm Res 48:139–159CrossRefGoogle Scholar
  10. Allard P, Carbonnelle J, Métrich N, Loyer H, Zettwoog P (1994) Sulphur output and magma degassing budget of Stromboli volcano. Nature 368:326–330CrossRefGoogle Scholar
  11. Allard P, JeanBaptiste P, Dalessandro W, Parello F, Parisi B, Flehoc C (1997) Mantle-derived helium and carbon in groundwaters and gases of Mount Etna, Italy. Earth Planet Sci Lett 148:501–516CrossRefGoogle Scholar
  12. Allard P, Behncke B, D’Amico S, Neri M, Gambino S (2006) Mount Etna 1993–2005: Anatomy of an evolving eruptive cycle. Earth Sci Rev 78:85–114CrossRefGoogle Scholar
  13. Allard P, Aiuppa A, Bani P, Parello F, Shinohara H, Gauthier PJ, Bagnato E, Bertagnini A, Mètrich N (2008) Magmatic volatile vmissions from Ambrym and Yasur volcanoes (Vanuatu arc). IAVCEI 2008, Iceland. Abstract: 35Google Scholar
  14. Allard P, Aiuppa A, Bani P, Metrich N, Bertagnini A, Gauthier PG, Parello F, Sawyer GM, Shinohara H, Bagnato E, Mariet C, Garaebiti E, Pelletier B (2009) Ambrym basaltic volcano (Vanuatu arc): volatile fluxes, magma degassing rate and chamber depth. Eos Trans AGU 90(52), Fall Meet Suppl, V24C-04Google Scholar
  15. Berner RA, Lasaga AC (1989) Modeling the geochemical carbon cycle. Am J Sci 260:74–81Google Scholar
  16. Branca S, Del Carlo P (2004) Eruptions of Mt. Etna During the Past 3,200 Years: A Revised Compilation Integrating the Historical and Stratigraphic Records. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Etna volcano laboratory. Am Geophys Union Geophys Mon 143:1:29Google Scholar
  17. Brantley SL, Koepenick KW (1995) Measured carbon dioxide emissions from Oldoinyo Lengai and the skewed distribution of passive volcanic fluxes. Geology 23:933–936CrossRefGoogle Scholar
  18. Burton MR, Oppenheimer C, Horrocks LA, Francis PW (2000) Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua. Geology 28:915–918CrossRefGoogle Scholar
  19. Caliro S, Panichi C, Stanzione D (1999) Variation in the total dissolved carbon isotope composition of thermal waters of the Island of Ischia (Italy) and its implications for volcanic surveillance. J Volcanol Geotherm Res 90:219–240CrossRefGoogle Scholar
  20. Caliro S, Chiodini G, Avino R, Cardellini C, Frondini F (2005) Volcanic degassing at Somma-Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater. Appl Geochem 20:1060–1076. doi: 10.1016/j.apgeochem.2005.02.002 CrossRefGoogle Scholar
  21. Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, Fiebig J (2007) The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta 71:3040–3055. doi: 10.1016/j.gca.2007.04.007 CrossRefGoogle Scholar
  22. Capasso G, Favara R, Inguaggiato S (1997) Chemical features and isotopic composition of gaseous manifestations on Vulcano Island, Aeolian Islands, Italy: An interpretative model of fluid circulation. Geochim Cosmochim Acta 61:3425–3440CrossRefGoogle Scholar
  23. Carroll MR, Halloway JR (1994) Volatiles in magmas. Rev Mineral 30:231–279Google Scholar
  24. Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev Mineral 43:1–81CrossRefGoogle Scholar
  25. Chiodini G, Cioni R, Marini L (1993) Reactions governing the chemistry of crater fumaroles from Vulcano Island (Italy) and implications for volcanic surveillance. Appl Geochem 8:357–371CrossRefGoogle Scholar
  26. Chiodini G, Frondini F, Cardellini C, Parello F, Peruzzi L (2000) Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers; the case of central Apennine, Italy. J Geophys Res 105:8423–8434. doi: 10.1029/1999JB900355 CrossRefGoogle Scholar
  27. Chiodini G, Frondini F, Cardellini C, Granieri D, Marini L, Ventura G (2001) CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J Geophys Res 106:16213–16221CrossRefGoogle Scholar
  28. Chiodini G, Caliro S, Cardellini C, Avino R, Granieri D, Schmidt A (2008) Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth Planet Sci Lett 274:372–379. doi: 10.1016/j.epsl.2008.07.051 CrossRefGoogle Scholar
  29. Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R, Baldini A, Donnini M, Minopoli C (2010) Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J Geophys Res 115:B03205. doi: 10.1029/2008JB006258 CrossRefGoogle Scholar
  30. Clocchiatti R, Joron JL, Treuil M (1988) The role of selective alkali contamination in the evolution of recent historic lavas of Mt. Etna J Volcanol Geotherm Res 34:241–249CrossRefGoogle Scholar
  31. Corsaro RA, Métrich N, Allard P, Andronico D, Miraglia L, Fourmentraux C (2009) The 1974 flank eruption of Mount Etna: an archetype for deep dike-fed eruptions at basaltic volcanoes and a milestone in Etna's recent history. J Geophys Res 114:B07204. doi: 10.1029/2008JB006013 CrossRefGoogle Scholar
  32. Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3:53–92CrossRefGoogle Scholar
  33. D'Alessandro W, Giammanco S, Parello F, Valenza M (1997) CO2 output and δ13C (CO2) from Mount Etna as indicators of degassing of shallow astenosphere. Bull Volcanol 59:455–458CrossRefGoogle Scholar
  34. Deines P, Gold DP (1973) Isotopic composition of carbonatite and kimberlite carbonates and their bearing on isotopic composition of deep-seated carbon. Geochim Cosmochim Acta 37:1709–1733CrossRefGoogle Scholar
  35. Frezzotti ML, Peccerillo A, Panza G (2009) Carbonate metasomatism and CO2 lithosphere-asthenosphere degassing beneath the Western Mediterranean: An integrated model arising from petrological and geophysical data. Chem Geol 262:108–120. doi: 10.1016/j.chemgeo.2009.02.015 CrossRefGoogle Scholar
  36. Gagliardi G, Restieri R, Casa G, Gianfrani L (2002) Concentration measurements and isotopic analysis using diode laser spectroscopy: applications to volcanic gas monitoring. Opt Lasers Eng 37:131–142CrossRefGoogle Scholar
  37. Gerlach TM (1991) Present-day CO2 emissions from volcanoes. EOS Trans AGU 72:240–253Google Scholar
  38. Gerlach TM, Graeber EJ (1985) Volatile budget of Kilauea Volcano. Nature 313:273–277CrossRefGoogle Scholar
  39. Gerlach TM, Delgado H, McGee K, Doukas M, Venegas J, Cardenas L (1997) Application of the Li-COR CO2 analyzer to volcanic plumes: a case study, volcano Popocatepetl, Mexico, June 7 and 10, 1995. J Geophys Res 102:8005–8019CrossRefGoogle Scholar
  40. Gerlach TM, McGee KA, Sutton AJ, Elias T (1998) Rate of volcanic CO2 degassing from airborne determinations of SO2 emission rates and plume CO2/SO2: test study at Pu’u ‘O’o cone, Kilauea volcano, Hawaii. Geophys Res Lett 25:2675–2678CrossRefGoogle Scholar
  41. Gerlach TM, McGee KA, Elias T, Sutton AJ, Doukas MP (2002) Carbon dioxide emission rat of Kilauea Volcano: implications for primary magma and the summit reservoir. J Geophys Res 107:2189. doi: 10.1029/2001JB000407 CrossRefGoogle Scholar
  42. Giammanco S, Inguaggiato S, Valenza M (1998) Soil and fumarole gases of Mount Etna: Geochemistry and relations with volcanic activity. J Volcanol Geotherm Res 81:297–310CrossRefGoogle Scholar
  43. Giggenbach WF (1997) Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heatflow sedimentary basins. Geochim Cosmochim Acta 61:3763–3785CrossRefGoogle Scholar
  44. Goff F, Love SP, Warren RG, Counce D, Obenholzner J, Siebe C, Schmidt SC (2001) Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatépetl volcano, Mexico. Chem Geol 177:133–156CrossRefGoogle Scholar
  45. Hager SA, Gerlach TM, Wallace PJ (2008) Summit CO2 emission rates by the CO2/SO2 ratio method at Kīlauea Volcano, Hawai'i, during a period of sustained inflation. J Volcanol Geotherm Res 177:875–882CrossRefGoogle Scholar
  46. Holloway JR, Blank JG (1994) Application of experimental results to C-O-H species in natural melts. Rev Mineral 30:187–230Google Scholar
  47. Iacono-Marziano G, Gaillard F, Scaillet B, Pichavant M, Chiodini G (2009) Role of non-mantle CO2 in the dynamics of volcano degassing: The Mount Vesuvius example. Geology 37:319–322CrossRefGoogle Scholar
  48. Kerrick DK, Connolly JAD (1998) Subduction of ophicarbonates and recycling of H2O-CO2. Geology 26:375–378CrossRefGoogle Scholar
  49. Kerrick DK, Connolly JAD (2001) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature 411:293–296CrossRefGoogle Scholar
  50. Kyser TK (1986) Stable isotope variations in the mantle. Rev Mineral 16:141–164Google Scholar
  51. Lewicki JL, Connor C, St-Amand K, Stix J, Spinner W (2003) Self-potential, soil CO2 flux, and temperature on Masaya volcano. Nicaragua Geophys Res Lett 30:1817. doi: 10.1029/2003GL017731 CrossRefGoogle Scholar
  52. Lyon GL, Hulston JR (1984) Carbon and hydrogen isotopic compositions of New-Zealand geothermal gases. Geochim Cosmochim Acta 48:1161–1171CrossRefGoogle Scholar
  53. Martelli M, Caracausi A, Paonita A, Rizzo A (2008) Geochemical variations of air-free crater fumaroles at Mt. Etna: New inferences for forecasting shallow volcanic activity. Geophys Res Lett 35:L21302. doi: 10.1029/2008GL035118 CrossRefGoogle Scholar
  54. Mattey DP (1991) Carbon dioxide solubility and carbon isotope fractionation in basaltic melt. Geochim Cosmochim Acta 55:3467–3473CrossRefGoogle Scholar
  55. Métrich N, Allard P, Spilliaert N, Andronico D, Burton M (2004) 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna's evolution in the last three decades. Earth Planet Sci Lett 228:1–17CrossRefGoogle Scholar
  56. Oppenheimer C, Kyle PR (2008) Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J Volcanol Geotherm Res 177:743–754CrossRefGoogle Scholar
  57. Oppenheimer C, Bani P, Calkins JA, Burton MR, SG M (2006) Rapid FTIR sensing of volcanic gases released by Strombolian explosions at Yasur volcano, Vanuatu. Appl Phys B 85:2–3. doi: 10.1007/s00340-006-2353-4 CrossRefGoogle Scholar
  58. Orsi G, de Vita S, di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy); constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214CrossRefGoogle Scholar
  59. Pecoraino G, Giammanco S (2005) Geochemical characterization and temporal changes in parietal gas emissions at Mt. Etna (Italy) during the period July 2000–July 2003. Terr Atmos Ocean Sci 16:805–841Google Scholar
  60. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2001) Numerical recipes in Fortran 77: the art of scientific computing. Cambridge Univ Press, CambridgeGoogle Scholar
  61. Rosi M, Sbrana A (eds) (1987) Phlegraean fields. Quaderni de “La Ricerca Scientifica” 114(9) CNR, RomaGoogle Scholar
  62. Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119:265–274CrossRefGoogle Scholar
  63. Sawyer GM, Oppenheimer C, Tsanev VI, Yirgu G (2008a) Magmatic degassing at Erta ‘Ale volcano, Ethiopia. J Volcanol Geotherm Res 178:837–846CrossRefGoogle Scholar
  64. Sawyer GM, Carn SA, Tsanev VI, Oppenheimer C, Burton MR (2008b) Investigation into magma degassing at Nyiragongo volcano. Democratic Republic of the Congo. Geochem Geophys Geosyst 9:Q02017. doi: 10.1029/2007GC001829 CrossRefGoogle Scholar
  65. Schiano P, Clocchiatti R, Ottolini L, Busa` T (2001) Transition of Mount Etna lavas from a mantle-plume to an island-arc magmatic source. Nature 412:900–904CrossRefGoogle Scholar
  66. Shinohara H, Witter JB (2005) Volcanic gases emitted during mild Strombolian activity of Villarica volcano Chile. Geophys Res Lett 32:L20308. doi: 10.1029/2005GL024131 CrossRefGoogle Scholar
  67. Shinohara H, Fukui K, Kazahaya K, Saito G (2003) Degassing process of Miyakejima volcano: Implications of gas emission rate and melt inclusion data. In: De Vivo B, Bodnar B (eds) Melt inclusions in volcanic systems. Elsevier, New York, pp 147–161CrossRefGoogle Scholar
  68. Spilliaert N, Allard P, Métrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111:B04203. doi: 10.1029/2005JB003934 CrossRefGoogle Scholar
  69. Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing; implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341CrossRefGoogle Scholar
  70. Tonarini S, Armienti P, D’Orazio M, Innocenti F (2001) Subduction-like fluids in the genesis of Mt. Etna magmas: evidence from boron isotopes and fluid mobile elements. Earth Planet Sci Lett 192:471–483CrossRefGoogle Scholar
  71. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240CrossRefGoogle Scholar
  72. Wardell LJ, Kylea PR, Dunbar N, Christenson B (2001) White Island volcano, New Zealand: carbon dioxide and sulfur dioxide emission rates and melt inclusion studies. Chem Geol 177:187–200CrossRefGoogle Scholar
  73. Wardell LJ, Kyle PR, Chaffin C (2004) Carbon dioxide and carbon monoxide emission rates from and alkaline intra-plate volcano: Mt. Erebus, Antarctica. J Volcanol Geotherm Res 131:109–121CrossRefGoogle Scholar
  74. Witt MLI, Mather TA, Pyle DM, Aiuppa A, Bagnato E, Tsanev VI (2008) Mercury and halogen emissions from Masaya and Telica volcanoes Nicaragua. J Geophys Res 113:B06203. doi: 10.1029/2007JB005401 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Giovanni Chiodini
    • 1
  • Stefano Caliro
    • 1
    Email author
  • Alessandro Aiuppa
    • 2
    • 3
  • Rosario Avino
    • 1
  • Domenico Granieri
    • 4
  • Roberto Moretti
    • 1
  • Francesco Parello
    • 2
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia Sez. Napoli Osservatorio VesuvianoNaplesItaly
  2. 2.Dipartimento CFTAUniversità di PalermoPalermoItaly
  3. 3.Istituto Nazionale di Geofisica e Vulcanologia Sez. PalermoPalermoItaly
  4. 4.Istituto Nazionale di Geofisica e Vulcanologia, Sez. PisaPisaItaly

Personalised recommendations