Skip to main content
Log in

Detecting short-term evolution of Etnean scoria cones: a LIDAR-based approach

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The 2001 and 2002–2003 flank eruptions on Mount Etna (Italy) were characterized by intense explosive activity which led to the formation of two large monogenetic scoria cones (one from each eruption) on the upper southern flank of the volcano. Continuous monitoring of Etna, especially during flank eruptions, has provided detailed information on the growth of these cones. They differ in genesis, shape, and size. A set of high resolution (1 m) digital elevation models (DEMs) derived from light detection and ranging (LIDAR) data collected during four different surveys (2004, 2005, 2006, and 2007) has been used to map morphology and to extract the morphometric parameters of the scoria cones. By comparing LIDAR-derived DEMs with a pre-eruption (1998) 10 m DEM, the volume of the two scoria cones was calculated for the first time. Comparison of the LIDAR-derived DEMs revealed in unprecedented detail morphological changes during scoria cone degradation. In particular, the morphologically more exposed and structurally weaker 2002–2003 cone was eroded rapidly during the first few years after its emplacement mainly due to gravitational instability of slopes and wind erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acocella V, Neri M (2009) Dike propagation in volcanic edifices: overview and possible developments. Tectonophysics 471:67–77. doi:10.1016/j.tecto.2008.10.002

    Article  Google Scholar 

  • Allard P, Behncke B, D'Amico S, Neri M, Gambino S (2006) Mount Etna 1993–2005: anatomy of an evolving eruptive cycle. Earth Sci Rev 78:85–114. doi:10.1016/j.earscirev.2006.04.002

    Article  Google Scholar 

  • Allen AR, Bryner VF, Smith IEM, Balance PF (1996) Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand. New Zeal J Geol Geop 39:309–327

    Article  Google Scholar 

  • Andronico D, Branca S, Calvari S, Burton MR, Caltabiano T, Corsaro RA, Del Carlo P, Garfì G, Lodato L, Miraglia L, Muré F, Neri M, Pecora E, Pompilio M, Salerno G, Spampanato L (2005) A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system. Bull Volcanol 67:314–330. doi:10/1007/s00445-004-0372-8

    Article  Google Scholar 

  • Andronico D, Cristaldi A, Del Carlo P, Taddeucci J (2009) Shifting styles of basaltic explosive activity during the 2002–03 eruption of Mt. Etna, Italy. J Volcanol Geotherm Res 180:110–122. doi:10.1016/j.jvolgeores.2008.07.026

    Article  Google Scholar 

  • Behncke B, Neri M (2003) The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476. doi:10.1007/s00445-003-0274-1

    Article  Google Scholar 

  • Behncke B, Neri M, Pecora E, Zanon V (2006) The exceptional activity and growth of the Southeast Crater, Mount Etna (Italy), between 1996 and 2001. Bull Volcanol 69:149–173. doi:10.1007/s00445-006-0061-x

    Article  Google Scholar 

  • Billi A, Acocella V, Funiciello R, Giordano G, Lanzafame G, Neri M (2003) Mechanisms for ground-surface fracturing and incipient slope failure associated to the July–August 2001 eruption of Mt. Etna, Italy: analysis of ephemeral field data. J Volcanol Geotherm Res 122:281–294. doi:10.1016/S0377-0273(02)00507-3

    Article  Google Scholar 

  • Bisson M, Behncke B, Fornaciai A, Neri M (2009) LiDAR-based digital terrain analysis of an area exposed to the risk of lava flow invasion: the Zafferana Etnea territory, Mt. Etna (Italy). Natural Hazards 50:321–334. doi:10.1007/s11069-009-9346-7

    Article  Google Scholar 

  • Bonaccorso A, Campisi O, Falzone G, Gambino S (2004) Continuous tilt monitoring: a lesson from 20 years experience at Mt. Etna. In Calvari S, Bonaccorso A, Coltelli M, Del Negro C, Falsaperla, S (Eds) Mt. Etna: Volcano Laboratory. Am Geophys Union Geophys Monogr 143:307–320

    Google Scholar 

  • Bonforte A, Bonaccorso A, Guglielmino F, Palano M, Puglisi G (2008) Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles. J Geophys Res 113 B05406. doi:10.1029/2007JB005334

  • Bonforte A, Gambino S, Neri M (2009) Intrusion of eccentric dikes: the case of the 2001 eruption and its role in the dynamics of Mt. Etna volcano. Tectonophysics 471:78–86. doi:10.1016/j.tecto.2008.09.028

    Article  Google Scholar 

  • Calvari S, Pinkerton H (2004) Birth, growth and morphologic evolution of the “Laghetto” cinder cone during the 2001 Etna eruption. J Volcanol Geotherm Res 132:225–239. doi:10.1016/S0377-0273(03)00347-0

    Article  Google Scholar 

  • Carracedo JC, Day S, Guillou H, Rodrigueza Badiola E (1996) The 1677 eruption of la Palma. Estud Geol 52:103–114

    Article  Google Scholar 

  • Chester DK, Duncan AM, Guest JE, Kilburn CRJ (1985) Mount Etna: the anatomy of a volcano. Chapmann and Hall, London, pp 1–404

    Google Scholar 

  • Clocchiatti R, Condomines M, Guénot N, Tanguy JC (2004) Magma changes at Mount Etna: the 2001 and 2002–2003 eruptions. Earth Planet Sci Lett 226:397–414. doi:10.1016/j.epsl.2004.07.039

    Article  Google Scholar 

  • Corazzato C, Tibaldi A (2006) Fracture control on type, morphology and distribution of parasitic volcanic cones: an example from Mt. Etna, Italy. J Volcanol Geotherm Res 158:177–194. doi:10.1016/j.jvolgeores.2006.04.018

    Article  Google Scholar 

  • Corsaro RA, Miraglia L, Pompilio M (2007) Petrologic evidence of a complex plumbing system feeding the July–August 2001 eruption of Mt. Etna, Sicily, Italy. Bull Volcanol 69:401–421

    Article  Google Scholar 

  • Dohrenwend JC, Wells SG, Turrin BD (1986) Degradation of Quaternary cinder cones in the Cima Volcanic Field, Mojave Desert, California. Geol Soc Am Bull 97:421–427. doi:10.1130/0016-7606(1986)97<421:DOQCCI>2.0.CO;2

    Article  Google Scholar 

  • Favalli M, Pareschi MT (2004) Digital elevation model construction from structured topographic data: the DEST algorithm. J Geophys Res 109:F04004. doi:10.1029/2004JF000150

    Article  Google Scholar 

  • Favalli M, Innocenti F, Pareschi MT, Pascquarè G, Mazzarini F, Branca S, Cavarra L, Tibaldi A (1999) The DEM of Mt. Etna: geomorphological and structural implications. Geodin Acta 12(5):279–290. doi:10.1016/S0985-3111(00)87045-X

    Article  Google Scholar 

  • Favalli M, Fornaciai A, Pareschi MT (2009a) LIDAR strip adjustment: application to volcanic areas. Geomorphology. doi:10.1016/j.geomorph.2009.04.010

    Google Scholar 

  • Favalli M, Harris AJL, Fornaciai A, Pareschi MT, Mazzarini M (2009b) The transitional channel zone of Etna’s 2001 Flow. Bull Volcanol. doi:10.1007/s00445-009-0300-z

    Google Scholar 

  • Favalli M, Karátson D, Mazzarini F, Pareschi MT, Boschi E (2009c) Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna volcano (Italy), based on high-resolution LiDAR data. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2009.07.011

    Google Scholar 

  • Ferlito C, Coltorti M, Cristofolini R, Giacomoni PP (2009) The contemporaneous emission of low-K and high-K trachybasalts and the role of the NE Rift during the 2002 eruptive event, Mt. Etna, Italy. Bull Volcanol 71:575–587. doi:10.1007/s00445-008-0243-9

    Article  Google Scholar 

  • Foshag WF, González-Reyna JR (1956) Birth and development of Parícutin volcano, México. US Geolol Surv Bull 965-D:355–489

    Google Scholar 

  • Hasenaka T, Carmichael ISE (1985) The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. J Volcanol Geotherm Res 25:105–124

    Article  Google Scholar 

  • Hooper DM, Sheridan MF (1998) Computer-simulation models of scoria cone degradation. J Volcanol Geotherm Res 83:241–267

    Article  Google Scholar 

  • Inbar M, Hubp JL, Ruiz LV (1994) The geomorphological evolution of the Paricutin cone and lava flows, Mexico, 1943–1990. Geomorphology 9:57–76. doi:10.1016/0169-555X(94)90031-0

    Article  Google Scholar 

  • Karátson D (1996) Rates and factors of stratovolcano degradation in a continental climate: a complex morphometric analysis of nineteen Neogene/Quaternary crater remnants in the Carpathians. J Volcanol Geotherm Res 73:65–78. doi:10.1016/0377-0273(96)00016-9

    Article  Google Scholar 

  • Lanzafame G, Neri M, Acocella V, Billi A, Funiciello R, Giordano G (2003) July–August 2001 Etna eruption: deformative pattern and its significance. J Geol Soc Lond 160:531–544. doi:10.1144/0016-764902-151

    Article  Google Scholar 

  • Luhr JF, Simkin T (1993) Parícutin, the volcano born in a Mexican cornfield. Geoscience Press, Phoenix, Arizona (Erosion Studies by Segerstrom: pp 283–311)

  • Mazzarini F, D’Orazio M (2003) Spatial distribution of cones and satellite-detected lineaments in the Pali Aike Volcanic Field (southernmost Patagonia): insights into the tectonic setting of a Neogene rift system. J Volcanol Geotherm Res 125:291–305. doi:10.1016/S0377-0273(03)00120-3

    Article  Google Scholar 

  • Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2005) Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophys Res Lett 32 l04305. doi:10.1029/2004Gl021815

  • Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2007) Lava flow identification and aging by means of Lidar intensity: the Mt. Etna case. J Geophys Res 112 B02201. doi:10.1029/2005JB004166

  • Mazzarini F, Fornaciai A, Bistacchi A, Pasquarè FA (2008) Fissural volcanism, polygenetic volcanic fields and crustal thickness in the Payen Volcanic Complex on the central Andes foreland (Mendoza, Argentina). Geochem Geophys Geosyst 9 Q09002. doi:10.1029/2008GC002037

  • McGetchin TR, Settle M, Chouet BA (1974) Cinder cone growth modeled after Northeast crater, Mount Etna, Sicily. J Geophys Res 79:3257–3272

    Article  Google Scholar 

  • McGuire WJ, Pullen AD (1989) Location and orientation of eruptive fissures and feeder dykes at Mount Etna; influence of gravitational and regional tectonic stress regimes. J Volcanol Geotherm Res 38:325–344. doi:10.1016/0377-0273(89)90046-2

    Article  Google Scholar 

  • Monaco C, Catalano S, Cocina O, De Guidi G, Ferlito C, Gresta S, Musumeci C, Tortorici L (2005) Tectonic control on the eruptive dynamics at Mt. Etna Volcano (Sicily) during the 2001 and 2002–2003 eruptions. J Volcanol Geotherm Res 144:211–233. doi:10.1016/j.jvolgeores.2004.11.024

    Article  Google Scholar 

  • Murray JB (1980) Changes at the summit of Mount Etna 1976–1978. In: Huntingdon AT, Guest JE and Francis EH (eds) United Kingdom research on Mount Etna 1977–1979. The Royal Society London: 37–42

  • Neri M, Acocella V, Behncke B (2004) The role of the Pernicana fault system in the spreading of Mt. Etna (Italy) during the 2002–2003 eruption. Bull Volcanol 66:417–430. doi:10.1007/s00445-003-0322-x

    Article  Google Scholar 

  • Neri M, Acocella V, Behncke B, Maiolino V, Ursino A, Velardita R (2005) Contrasting triggering mechanisms of the 2001 and 2002–2003 eruptions of Mount Etna (Italy). J Volcanol Geotherm Res 144:235–255. doi:10.1016/j.jvolgeores.2004.11.025

    Article  Google Scholar 

  • Neri M, Mazzarini F, Tarquini S, Bisson M, Isola I, Behncke B, Pareschi MT (2008) The changing face of Mount Etna's summit area documented with LiDAR technology. Geophys Res Lett 35 L09305. doi:10.1029/2008GL033740

  • Neri M, Casu F, Acocella V, Solaro G, Pepe S, Berardino P, Sansosti E, Caltabiano T, Lundgren P, Lanari R (2009) Deformation and eruptions at Mt. Etna (Italy): a lesson from 15 years of observations. Geophy Res Lett 36 L02309. doi:10.1029/2008GL036151

  • Patanè D, Chiarabba C, De Gori P, Bonaccorso A (2003a) Magma ascent and the pressurization of Mt Etna’s volcanic system. Science 299:2061–2063

    Article  Google Scholar 

  • Patanè D, Privitera E, Gresta G, Akinci A, Alparone A, Barberi G, Chiaraluce L, Cocina O, D’Amico S, De Gori P, Di Grazia G, Falsaperla S, Ferrari F, Gambino S, Giapiccolo E, Langer H, Maiolino V, Moretti M, Mostaccio A, Musumeci C, Piccinini D, Reitano D, Scarfì L, Spampanato S, Ursino A, Zuccarello L (2003b) Seismological constraints for the dike emplacement of July–August 2001 lateral eruption at Mt. Etna volcano, Italy. Ann Geophys 46:599–608

    Google Scholar 

  • Pelletier JD, Cline ML (2007) Nonlinear slope-dependent sediment transport in cinder cone evolution. Geology 35:1067–1070. doi:10.1130/G23992A.1

    Article  Google Scholar 

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado-Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368. doi:10.1016/j.epsl.2008.04.026

    Article  Google Scholar 

  • Porter SC (1972) Distribution, morphology and size frequency of cinder cones on Mauna Kea volcano, Hawaii. Geol Soc Am Bull 83:3607–3612. doi:10.1130/0016-7606(1972)83[3607:DMASFO]2.0.CO;2

    Article  Google Scholar 

  • Riedel C, Ernst GGJ, Riley M (2003) Controls on the growth and geometry of pyroclastic constructs. J Volcanol Geotherm Res 127:121–152. doi:10.1016/S0377-0273(03)00196-3

    Article  Google Scholar 

  • Rust D, Behncke B, Neri M, Ciocanel A (2005) Nested zones of instability in the Mount Etna volcanic edifice, Sicily. J Volcanol Geotherm Res 144:137–153. doi:10.1016/j.jvolgeores.2004.11.021

    Article  Google Scholar 

  • Schmincke H-U (1977) Phreatomagmatische Phasen in quartären Vulkanen der Osteifel. Geol Jahrb 39:3–45

    Google Scholar 

  • Settle M (1979) The structure and emplacement of cinder cone fields. Am J Sci 279:1089–1107

    Article  Google Scholar 

  • Spampinato L, Calvari S, Oppenheimer C, Lodato L (2008) Shallow magma transport for the 2002–2003 Mt. Etna eruption inferred from thermal infrared surveys. J Volcanol Geotherm Res 177:301–312. doi:10.1016/j.jvolgeores.2008.05.013

    Article  Google Scholar 

  • Sporli KB, Eastwood VR (1997) Elliptical boundary of an intraplate volcanic field, Auckland, New Zealand. J Volcanol Geotherm Res 79:169–179. doi:10.1016/S0377-0273(97)00030-9

    Article  Google Scholar 

  • Takada A (1994) The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. J Geophys Res 99:13563–13573

    Article  Google Scholar 

  • Tarquini S, Isola I, Favalli M, Mazzarini F, Bisson M, Pareschi MT, Boschi E (2007) TINITALY/01: a new Triangular Irregular Network of Italy. Ann Geophys 50:407–425

    Google Scholar 

  • Tibaldi A (1995) Morphology of pyroclastic cones and tectonics. J Geophys Res 100:24521–24535

    Article  Google Scholar 

  • Viccaro M, Ferlito C, Cortesogno L, Cristofolini R, Gaggero L (2006) Magma mixing during the 2001 event at Mount Etna (Italy): effects on the eruptive dynamics. J Volcanol Geotherm Res 149:139–159. doi:10.1016/j.jvolgeores.2005.06.004

    Article  Google Scholar 

  • Vosselman G, Maas HG (2001) Adjustment and filtering of raw laser altimetry data. OEEPE Workshop on Airborne Laser Systems and Interferometric SAR for Detailed Digital Elevation Models, vol 40, pp 62–72

  • Walker JPL (2000) Basaltic volcanoes and volcanic systems. In: Sigurdsson H (ed) Enciclopedia of Volcanoes. Academic, San Diego, pp 283–289

    Google Scholar 

  • Walter TR, Acocella V, Neri M, Amelung F (2005) Feedback processes between magmatism and E-flank movement at Mt. Etna (Italy) during the 2002–2003 eruption. J Geophys Res 110 B10205. doi:10.1029/2005JB003688

  • Wood CA (1980a) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413

    Article  Google Scholar 

  • Wood CA (1980b) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8:137–160

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Italian Dipartimento della Protezione Civile in the framework of the 2007–2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia—INGV. A.F. received support from the MIUR-FIRB project “Piattaforma di ricerca multidisciplinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ; S.T. benefited from the project FIRB "Sviluppo di nuove tecnologie per la protezione e difesa del territorio dai rischi naturali (FUMO)" funded by the Italian Ministero dell'Istruzione, dell'Università e della Ricerca. The detailed reviews by David Karátson, an anonymous reviewer and the associate editor Jocelyn McPhie improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fornaciai.

Additional information

Editorial responsibility: J. McPhie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fornaciai, A., Behncke, B., Favalli, M. et al. Detecting short-term evolution of Etnean scoria cones: a LIDAR-based approach. Bull Volcanol 72, 1209–1222 (2010). https://doi.org/10.1007/s00445-010-0394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-010-0394-3

Keywords

Navigation