Skip to main content
Log in

The dynamics of a double-cell hydrothermal system in triggering seismicity at Somma-Vesuvius: results from a high-resolution radon survey (revisited)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Data collected at Somma-Vesuvius during the 1998–1999 radon surveys have been revisited and reinterpreted in light of recent geophysical and geochemical information. The duration of selected radon anomalies, together with the decay properties of radon, have been used to estimate the permeability and porosity of rocks of the deep hydrothermal system. The current local cyclic seismicity is explained by means of a double convective-cell model. Convective cells are separated by a low-permeability horizon located at about 2–2.5 km below sea level. Fluids convecting within the upper cells show temperatures ranging 300–350°C. Rock permeabilities in this sector are estimated on the order of 10−12 m2, for porosities (ϕ) of about 10−5 typical of a brittle environment where fluid velocities may reach ∼800 m/day. Fluid temperatures within the lower cells may be as high as 400–450°C, consistent with supercritical regimes. The hydrodynamic parameters for these cells are lower, with permeability k ∼ 10−15 m2, and porosity ranging from 10−6 to 10−7. Here, fluid motion toward the surface is controlled by the fracture network within a porous medium approaching brittle–ductile behaviour, and fluid velocities may reach ∼1,800 m/day. The low-permeability horizon is a layer where upper and lower convecting cells converge. In this region, fluids (convecting both at upper and lower levels) percolate through the wallrock and release their brines. Due to self-sealing processes, permeability within this horizon reaches critical values to keep the fluid pressure near lithostatic pressure (for k ∼ 10−18 m2). Deep fluid pressure buildups precede the onset of hydrothermally induced earthquakes. Permeability distribution and rock strength do not exclude that the next eruption at Somma-Vesuvius could be preceded by a seismic crisis, eventually leading to a precursory phreatic explosion. The coupling of these mechanisms has the potential of inducing pervasive failure within rocks of the hydrothermal shell, and may be a prelude to a magmatic eruption. It is finally emphasised that the integrated analysis of seismic and geochemical data, including radon emissions, could be successfully used in testing temperature distributions and variations of porosity and permeability in active geothermal reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. They experimentally analysed the emission of thoron in small-scale crushing experiments. The short-lived thoron has been considered a better indicator for investigating the onset of anomalies. The results show a slight increase in thoron emissions during sample compression, followed by a drastic increase during and after failure of the sample. After complete crushing the emission of thoron progressively reduces to zero.

References

  • Arrighi S, Principe C, Rosi M (2001) Violent strombolian and subplinian eruptions at Vesuvius during the post-1631 activity. Bull Vocanol 63:126–150

    Article  Google Scholar 

  • Auger A, Gasparini P, Virieux J, Zollo A (2001) Seismic evidence of an extended magmatic sill under Mt.Vesuvius. Science 294:1510–1512

    Article  Google Scholar 

  • Barberi F, Leoni L (1980) Metamorphic carbonate ejecta from Vesuvius Plinian eruptions: evidence for the occurrence of shallow magma chambers. Bull Volcanol 43–1:107–120

    Article  Google Scholar 

  • Barberi F, Bertagni A, Landi P, Principe P (1992) A review on phreatic eruptions and their precursors. J Volcanol Geotherm Res 52:231–246

    Article  Google Scholar 

  • Barberi F, Carapezza ML (2002) Phreatic eruptions at converging plate volcanoes: isolated minor events or forerunners of major eruptive bursts. In “Explosive volcanism in Subduction Zones, Mount Pelée 1902–2002”, p 76

  • Belkin HE, De Vivo B, Roedder E, Cortini M (1985) Fluid inclusion geobarometry from ejected Mt. Somma-Vesuvius nodules. Am Mineral 70:228–303

    Google Scholar 

  • Bertagnini A, Landi P, Santacroce R, Sbrana A (1991) The 1906 eruption of Vesuvius from magmatic to phreatomagmatic activity through the flashing of a shallow depth hydrothermal system. Bull Volcanol 53:517–532

    Article  Google Scholar 

  • Bianco F, Castellano M, Milano G, Ventura G, Vilardo G (1998) The Somma-Vesuvius stress-field induced by regional tectonics: evidences by seismological and mesostructural data. J Volcanol Geotherm Res 82:199–218

    Article  Google Scholar 

  • Bonetti R, Capra L, Chiesa C, Guglielmetti A, Migliorini C (1991) Energy response of LR115 cellulose nitrate to alpha particle beams. Nucl Rad Meas 18:321–338

    Article  Google Scholar 

  • Borgia A, Tizzoni P, Solaro G, Manzo M, Casu F, Luongo G, Pepe A, Berardino P, Fornaio G, Sansosti E, Ricciardi GP, Fusi N, Di Donna G, Lanari R (2005) Volcanic spreading of Vesuvius, a new paradigm for interpreting its volcanic activity. Geophys Res Lett 32:L03303. doi:10.1029/2004GL022155

  • Burton M, Neri M, Condarelli D (2004) High spatial resolution radon measurements reveal hidden active faults on Mt. Etna, Geophys Res Lett 31:L07618. doi:10.1029/2003GL019181

  • Cassano E, La Torre P (1987) Geophysics. In: Santacroce R (ed) Somma-Vesuvius. CNR Quad Ric Sci 114(8):175–196

    Google Scholar 

  • Cathles LM (1997) Thermal aspects of ore formation. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 191–227

    Google Scholar 

  • Celico F, Esposito L, Mancuso M (2001) Hydrodynamic and hydrochemical complexity of Naples urban area: some interpretations. Geol Tecnic Amb 2:35–54

    Google Scholar 

  • Chiodini G, Marini L (1998) Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochim Cosmochim Acta 62:2673–2687

    Article  Google Scholar 

  • Chiodini G, Avino R, Cardellini C, Caliro S, Granieri G, Russo M (1999) Geochimica. Rend Att Sorveglianza Oss Vesuviano, pp 26–29

  • Chiodini G, Marini L, Russo M (2001) Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy. Geochim Cosmochim Acta 65:2129–2147

    Article  Google Scholar 

  • Chirkov AM (1975) Radon as a possible criterion for predicting eruptions as observed at Karymsky volcano. Bull Volcanol 39:126–131

    Article  Google Scholar 

  • Cigolini C, Salierno F, Gervino G, Bergese P, Marino C, Russo M, Prati P, Ariola V, Bonetti R, Begnini S (2001) High-resolution radon monitoring and hydrodynamics at Mount Vesuvius. Geophys Res Lett 28:4035–4039

    Article  Google Scholar 

  • Cigolini C, Gervino G, Bonetti R, Conte F, Laiolo M, Coppola D, Manzoni A (2005) Tracking precursors and degassing by radon monitoring during major eruptions at Stromboli Volcano (Aeolian Islands, Italy). Geophys Res Lett 32:L12308. doi:10.1029/2005GL022606

  • Cigolini C, Laiolo M, Coppola D (2007) Earthquake-volcano interactions detected from radon degassing at Stromboli (Italy). Earth Planet Sci Lett 257:511–525

    Article  Google Scholar 

  • Connor C, Hill B, LaFemina P, Navarro M, Conway M (1996) Soil Rn222 pulse during the initial phase of the June August 1995 eruption of Cerro Negro, Nicaragua. J Volcanol Geotherm Res 73:119–127

    Article  Google Scholar 

  • Cox ME (1980) Ground radon survey of a geothermal area in Hawaii. Geophys Res Lett 7:283–286

    Article  Google Scholar 

  • Del Pezzo E, Blanco F, Saccorotti G (2004) Seismic source dynamics at Vesuvius volcano, Italy. J Volcanol Geotherm Res 133:23–39

    Article  Google Scholar 

  • Del Moro A, Fulignati P, Marianelli P, Sbrana A (2002) Magma contamination by direct wall rock interaction: constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption). J Volcanol Geotherm Res 112:15–24

    Article  Google Scholar 

  • De Natale G, Kuznetzov I, Kronrod T, Peresan A, Sarao A, Troise C, Panza GF (2004) Three decades of seismic activity at Mt. Vesuvius: 1972–2000. Pure Appl Geophys 161:123–144

    Article  Google Scholar 

  • De Natale G, Troise C, Pingue F, Mastrolorenzo G, Pappalardo L (2006) The Somma-Vesuvius volcano (Southern Italy): Structure, dynamics and hazard evaluation. Earth Sci Rev 74:73–111

    Article  Google Scholar 

  • Di Maio R, Mauriello P, Patella D, Petrillo Z, Piscitelli S, Siniscalchi A (1998) Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting. J Volcanol Geotherm Res 82:131–151

    Google Scholar 

  • Duma G, Vilardo G (1998) Seismicity cycles in the Mount Vesuvius area and their relation to solar flux and variations of the Earth magnetic field. Phys Chem Earth 23:927–931

    Article  Google Scholar 

  • Federico C, Aiuppa A, Favara R, Gurrieri S, Valenza M (2004) Geochemical monitoring of groundwaters (1998–2001) at Vesuvius volcano (Italy). J Volcanol Geotherm Res 133:81–104

    Article  Google Scholar 

  • Fleischer RL, Mogro-Campero A (1985) Association with subsurface radon changes in Alaska and the northeastern United States with earthquakes. Geochim Cosmochim Acta 49:1061–1071

    Article  Google Scholar 

  • Frepoli A, Amato A (2000) Fault plane solutions of crustal earthquakes in Southern Italy (1988-1995): seismotectonic implications. Annal Geofes 43:437–467

    Google Scholar 

  • Fournier RO (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol 94:1193–1212

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Engelwood Cliffs

    Google Scholar 

  • Fulignati P, Gioncada A, Sbrana A (1995) The magma chamber related hydrothermal system of Vesuvius: first mineralogical and fluid inclusion data on hydrothermal subvolcanic and lavic samples from phreatomagmatic eruptions. Per Mineral 64:185–187

    Google Scholar 

  • Fulignati P, Marianelli P, Sbrana A (1998) New insights on the thermometamorphic-metasomatic magma chamber shell of the 1944 eruption of Vesuvius. Acta Vulcanol 10:47–54

    Google Scholar 

  • Gauthier PJ, Condomines M, Hammouda T (1999) An experimental investigation of radon diffusion in an anhydrous andesitic melt at atmospheric pressure: implications for radon degassing from erupting magmas. Geochim Cosmochim Acta 63:645–656

    Article  Google Scholar 

  • Germanovich LN, Lowell RP (1995) The mechanism of phreatic eruptions. J Geophys Res 100:8417–8434

    Article  Google Scholar 

  • Hill DP, Pollitz F, Newhall C (2002) Earthquake–volcano interactions. Phys Today 55:41–47

    Article  Google Scholar 

  • Hanson RB (1995) The hydrodynamics of contact metamorphism. Geol Soc Am Bull 107:595–611

    Article  Google Scholar 

  • Hishimuma T, Nishikawa T, Shimoyama T, Myajima M, Tamagawa Y, Okabe S (1999) Emission of radon and thoron due to the fracture of rocks. Il Nuovo Cimento 22:523–527

    Google Scholar 

  • Holloway JR (1977) Fugacity and activity of molecular species in supercritical fluids. In: Fraser DG (ed) Thermodynamics in geology. Reidel Dordrecht, Holland, pp 161–181

    Google Scholar 

  • Iigarashi G, Saeki S, Takahata N, Sumikawa K, Tasaka S, Sasaki Y, Takahashi M, Sano Y (1995) Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269:60–61

    Article  Google Scholar 

  • Jellinek AM, De Paolo D (2003) A model for the origin of large silicic magma chambers: precursors of caldera forming eruptions. Bull Volcanol 65:363–381

    Article  Google Scholar 

  • Kerrick DM, Jacob GK (1981) A modified Redlich-Kwong equation for H2O, CO2 and H2O-CO2 mixtures at elevated pressures and temperatures. Am J Sci 281:735–767

    Google Scholar 

  • Lapwood ER (1948) Convection of a fluid in a porous medium. Proc Cambridge Philos Soc 44:508–52

    Article  Google Scholar 

  • Lemmon EW, McLinden MO, Friend DG (2005) Thermophysical properties of fluid systems. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook. NIST Standard Reference Database N 69, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov)

  • Lomax A, Zollo A, Capuano P, Virieux J (2001) Precise, absolute earthquake location under Somma–Vesuvius volcano using a new 3D velocity model. Geophys J Int 146:313–331

    Article  Google Scholar 

  • Matthäi S, Roberts SG (1997) Transient versus continuous fluid flow in seismically active faults: an investigation by electric analogue and numerically modelling. In: Jamtveit B, Yardley BDV (eds) Fluid flow and transport in rocks. Chapman & Hall, London, pp 263–295

    Google Scholar 

  • Mogro-Campero A, Fleischer RL (1997) Subterrestrial fluid convection: a hypothesis for long distance migration of radon within the earth. Earth Planet Sci Lett 34:321–325

    Article  Google Scholar 

  • Müeller M, Hördt A, Neubauer FM (1999) Electromagnetic technique’s success at vesuvius points to use in forecasting eruptions. EOS Trans AGU 80:393–401

    Google Scholar 

  • Nostro C, Stein RS, Cocco M, Belardinelli ME, Marzocchi W (1998) Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer. J Geophys Res 103:24487–24504

    Article  Google Scholar 

  • Oxburgh ER (1980) Heat flow and magma genesis. In: Hargraves RB (ed) Physics of magmatic processes. Princeton Univ Press, Princeton, pp 161–194

    Google Scholar 

  • Palliser C, McKibbin R (1998) A model for deep geothermal brines. III: Thermodynamic properties—enthalpy and viscosity. Transport in Porous Media 33:155–71

    Article  Google Scholar 

  • Pandolfi D, Bean CJ, Saccorotti G (2006) Coda wave interferometric detection of seismic velocity changes associated with the 1999 M=3.6 event at Mt. Vesuvius. Geophys Res Lett 33:L06306. doi:10.1029/2005GL025355

  • Petit J, Wibberley CAJ, Ruiz G (1999) Crack-seal, slip: a new fault valve mechanism? J Struct Geol 21:1199–1207

    Article  Google Scholar 

  • Planicić J, Radolić V, Vuković B (2004) Radon as an earthquake precursor. Nucl Instr Meth Phys Res SA 530:568–574

    Article  Google Scholar 

  • Prati P, Cavagnetto F, Corvisiero P, Foppiano F, Pilo A, Salvo C, Taccini G (1992) A radon measuring technique with germanium detectors. Physica Medica VIII 1:31–33

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1979) Thermodynamic properties of minerals and related substances at 218.15 K and 1 Bar (105 Pascals) pressure and higher temperatures. US Geol Surv Bull 1452:1–456

    Google Scholar 

  • Santacroce R (1987) Somma-Vesuvius. In: Santacroce R (ed) C.N.R. Quad Ric Sci 114/8:1–251

  • Sparks RSJ (1981) Triggering of volcanic eruptions by Earth tides. Nature 290:448

    Article  Google Scholar 

  • Tanger JC, Pitzer KS (1989) Thermodynamics of NaCl-H2O: A new equation of state for the near-critical region and comparison with other equations for adjoining regions. Geochim Cosmochim Acta 53:973–987

    Article  Google Scholar 

  • Thomas DM, Cox ME, Cuff KE (1986) The association between ground gas radon variations and geologic activity in Hawaii. J Geophys Res 91:12186–12198

    Article  Google Scholar 

  • Tilling RI (1995) The role of monitoring in forecasting volcanic events. In: McGuire E, Kilburn C, Murray J (eds) Monitoring active volcanoes. UCL, London, pp 369–397

    Google Scholar 

  • Tondi R, De Franco R (2003) Three-dimensional modeling of Mount Vesuvius with sequential integrated inversion. J Geophys Res 108:2256. doi:10.1029/2001JB001578

    Article  Google Scholar 

  • Ventura G, Vilardo G (1999a) Seismic-based estimate of hydraulic parameters at Vesuvius volcano. Geophys Res Lett 26:887–890

    Article  Google Scholar 

  • Ventura G, Vilardo G (1999b) Slip tendency analysis of the Vesuvius faults: implications for the seismotectonic and volcanic hazard assessment. Geophys Res Lett 26:3229–3232

    Article  Google Scholar 

  • Vilardo G, Bianco F, Castellano M (1999) Sismicità. Rend Att Sorveglianza Oss Vesuviano, pp 1–5

  • Zollo A, Gasparini P, Virieux J, Biella G, Boschi E, Capuano P, De Franco R, Dell'Aversana P, De Natale G, De Matteis R, Iannacone G, Guerra I, Le Meur H, Mirabile I (1998) An image of Mt. Vesuvius obtained by 2D seismic tomography. J Volcanol Geotherm Res 82:161–163

    Article  Google Scholar 

  • Zollo A, Marzocchi W, Capuano P, Lomax A, Iannaccone G (2002) Space and time behavior of seismic activity at Mt. Vesuvius volcano, southern Italy. Bull Seismol Soc Am 92:625–640

    Article  Google Scholar 

Download references

Acknowledgements

This paper was funded by the National Institute for Geophysics and Volcanology (INGV) and MIUR. A. Frepoli provided the focal mechanism solutions for the two regional earthquakes considered. A. Borgia, C. Kilburn and G. Ventura provided helpful comments. I wish to thank the staff of the “Osservatorio Vesuviano” for the hospitality during field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Cigolini.

Additional information

Editorial responsibility: M. Ripepe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cigolini, C. The dynamics of a double-cell hydrothermal system in triggering seismicity at Somma-Vesuvius: results from a high-resolution radon survey (revisited). Bull Volcanol 72, 693–704 (2010). https://doi.org/10.1007/s00445-010-0355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-010-0355-x

Keywords

Navigation