Skip to main content

Apparent downwind depletion of volcanic SO2 flux—lessons from Masaya Volcano, Nicaragua

Abstract

A series of 707 measurements at Masaya in 2005, 2006, and 2007 reveals that SO2 emissions 15km downwind of the active vent appear to be ~33% to ~50% less than those measured only 5km from the vent. Measurements from this and previous studies indicate that dry deposition of sulfur from the plume and conversion of SO2 to sulfate aerosols within the plume each may amount to a maximum of 10% loss, and are not sufficient to account for the larger apparent loss measured. However, the SO2 measurement site 15km downwind is located on a ridge over which local trade winds, and the entrained plume, accelerate. Greater wind speeds cause localized dilution of the plume along the axis of propagation. The lower concentrations of SO2 measured on the ridge therefore lead to calculations of lower fluxes when calculated at the same plume speed as measurements from only 5km downwind, and is responsible for the apparent loss of SO2. Due to the importance of SO2 emission rates with respect to hazard mitigation, petrologic studies, and sulfur budget calculations, measured fluxes of SO2 must be as accurate as possible. Future campaigns to measure SO2 flux at Masaya and similar volcanoes will require individual plume speed measurements to be taken at each flux measurement site to compensate for dilution and subsequent calculation of lower fluxes. This study highlights the importance of a comprehensive understanding of a volcano’s interaction with its surroundings, especially for low, boundary layer volcanoes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Allen AG, Oppenheimer C, Ferm M, Baxter PJ, Horrocks LA, Galle B, McGonigle AJS, Duffell HJ (2002) Primary sulfate aerosol and associated emissions from Masaya Volcano, Nicaragua. J Geophys Res D Atmos 107(D23):4682. doi:10.1029/2002JD002120

    Google Scholar 

  • Andres RJ, Kasgnoc AD (1998) A time-averaged inventory of subaerial volcanic sulfur emissions. J Geophys Res 103:25251–25261

    Article  Google Scholar 

  • Andres RJ, Rose WI, Kyle PR, deSilva S, Francis P, Gardeweg M, Moreno Roa H (1991) Excessive sulfur dioxide emissions from Chilean volcanoes. J Volcanol Geotherm Res 46:323–329

    Article  Google Scholar 

  • Casadevall TJ, Johnston DA, Harris DM, Rose Jr. WI, Malinconico LL, Stoiber RE, Bornhorst TJ, Williams SN, Woodruff L, Thompson JM (1981) SO2 emission rates at Mount St. Helens from March 29 through December, 1980. In: Lipman PW, Mullineaux DR (Eds) The 1980 Eruptions of Mount St. Helens. US Geol Surv Prof Paper 1250, pp. 193–200

  • CCVG-IAVCEI (2003) Eighth Field Workshop on Volcanic Gases, March 26 to April 1, 2003. In: The Commission on the Chemistry of Volcanic Gases & International Association of Volcanology and Chemistry of the Earth’s Interior, Nicaragua and Costa Rica, <http://http://www.iavcei.org/>

  • Delmelle P, Baxter P, Beaulieu A, Burton M, Francis P, Garcia-Alvarez J, Horrocks L, Navarro M, Oppenheimer C, Rothery D, Rymer H, St. Amand K, Stix J, Strauch W, Williams-Jones G (1999) Origin, effects of Masaya Volcano’s continued unrest probed in Nicaragua. EOS, Trans, Am Geophys Union 80:575–581

    Article  Google Scholar 

  • Delmelle P, Stix J, Bourque CPA, Baxter PJ, Garcia-Alvarez J, Barquero J (2001) Dry deposition and heavy acid loading in the vicinity of Masaya Volcano, a major sulfur and chlorine source in Nicaragua. Environ Sci Technol 35:1289–1293

    Google Scholar 

  • Delmelle P, Stix J, Baxter J, Garcia-Alvarez J, Barquero J (2002) Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua. Bull Volcanol 64:423–434

    Article  Google Scholar 

  • Doukas MP (2002) A new method from GPS-based wind speed determinations during airborne volcanic plume measurements. US Geol Surv Open-File Rep 02-395, pp. 1–13

  • Eatough DJ, Caka FM, Farber RJ (1994) The conversion of SO2 to sulfate in the atmosphere. Isr J Chem 34:301–314

    Article  Google Scholar 

  • Elias T, Sutton AJ, Stokes JB, Casadevall TJ (1998) Sulfur dioxide emission rates of Kilauea Volcano, Hawaii, 1979–1997. US Geol Surv Open-File Rep 98-462

  • Favalli M, Mazzarini F, Pareschi MT, Boschi E (2004) Role of local wind circulation in plume monitoring at Mt. Etna volcano (Sicily): insights from a mesoscale numerical model. Geophys Res Lett 31:L09105. doi:10.1029/2003GL019281

    Article  Google Scholar 

  • Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks L (2003) A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes; a new tool for volcano surveillance. J Volcanol Geotherm Res 119:241–254

    Article  Google Scholar 

  • Girard G, van Wyk de Vries B (2005) The Managua Graben and Las Sierras–Masaya volcanic complex (Nicaragua); pull-apart localization by an intrusive complex: results from analogue modeling. J Volcanol Geotherm Res 144:37–57

    Article  Google Scholar 

  • Graziani G, Martilli A, Pareschi MT, Valenza M (1997) Atmospheric dispersion of natural gases at Vulcano island. J Volcanol Geotherm Res 75:283–308

    Article  Google Scholar 

  • Horrocks L, Burton M, Francis P, Oppenheimer C (1999) Stable gas plume composition measured by OP-FTIR spectroscopy at Masaya Volcano, Nicaragua, 1998–1999. Geophys Res Lett. 26(23):3497–3500

    Article  Google Scholar 

  • Horton KA, Williams-Jones G, Garbeil H, Elias T, Sutton AJ, Mouginis-Mark P, Porter JN, Clegg S (2006) Real-time measurement of volcanic SO2 emissions: validation of a new UV correlation spectrometer (FLYSPEC). Bull Volcanol 68:323–327

    Article  Google Scholar 

  • Hunt JCR, Simpson JE (1982) Atmospheric Boundary Layers over Non-homogenous Terrain. In: Plate EJ (ed) Engineering meteorology: fundamentals of meteorology and their application to problems in environmental and civil engineering. Elsevier, New York, pp 269–318

    Google Scholar 

  • Mather TA, Allen AG, Oppenheimer C, Pyle DM, McGonigle AJS (2003) Size-resolved characterisation of soluble ions in the particles in the tropospheric plume of Masaya Volcano, Nicaragua: origins and plume processing. J Atmos Chem 46:207–237

    Article  Google Scholar 

  • Mather TA, Tsanev VI, Pyle DM, McGonigle AJS, Oppenehimer C, Allen AG (2004) Characterization and evolution of tropospheric plumes from Lascar and Villarrica volcanoes, Chile. J Geophys Res 109:D21303. doi:10.1029/2004JD004934

    Article  Google Scholar 

  • McBirney AR (1956) The Nicaragua volcano Masaya and its caldera. EOS, Trans, Am Geophys Union 37:83–96

    Article  Google Scholar 

  • McGonigle AJS, Oppenheimer C, Galle B, Mather TA, Pyle DM (2002) Walking traverse and scanning DOAS measurements of volcanic gas emission rates. Geophys Res Lett 29:1985. doi:10.10292/s002GL015827

    Article  Google Scholar 

  • McGonigle AJS, Delmelle P, Oppenheimer C, Tsanev VI, Delfosse T, Williams-Jones G, Horton K, Mather TA (2004) SO2 depletion in tropospheric volcanic plumes. Geophys Res Lett 31:L13201. doi:10.1029/2004GL019990

    Google Scholar 

  • McGonigle AJS, Hilton DR, Fischer TP, Oppenheimer C (2005a) Plume velocity determination for volcanic SO2 flux measurements. Geophys Res Lett 32:L11302. doi:10.1029/2005GL022470

    Article  Google Scholar 

  • McGonigle AJS, Inguaggiato S, Aiuppa A, Hayes AR, Oppenheimer C (2005b) Accurate measurement of volcanic SO2 flux: determination of plume transport speed and integrated SO2 concentration with a single device. Geochem Geophys Geosystems 6(1):Q02003. doi:10.1029/2004GC000845

    Google Scholar 

  • Morys MF, Mims III FM, Anderson SE (1996) Design, calibration, and performance of MICROTOPS II hand-held ozonometer. 12th International Symposium on Photobiology, Vienna, Austria, International Congress on Photobiology. <http://www.solar.com/ftp/papers/mtops.pdf>

  • Nadeau PA, Williams-Jones G (2008) Beyond COSPEC: Recent advances in SO2 monitoring technology. In: Williams-Jones G, Stix J, Hickson C (eds) The COSPEC Cookbook: Making SO2 Gas Measurements at Active Volcanoes. IAVCEI Methods in Volcanol, 1, pp. 219–233, <http://www.iavcei.org/>

  • Oke TR (1987) Boundary Layer Climates, 2nd edn. Routledge, Methuen, New York

    Google Scholar 

  • Oppenheimer C, Francis P, Stix J (1998) Depletion rates of sulfur dioxide in tropospheric volcanic plumes. Geophys Res Lett 25(14):2671–2674

    Article  Google Scholar 

  • Porter JN, Miller M, Pietras C, Motell C (2001) Ship-based sun photometer measurements using microtops sun photometers. J Atmos Ocean Technol 18:765–774

    Article  Google Scholar 

  • Porter JN, Horton KA, Mouginis-Mark PJ, Lienert B, Sharma SK, Lau E, Sutton AJ, Elias T, Oppenheimer C (2002) Sun photometer and lidar measurements of the plume from the Hawaii Kilauea Volcano Pu’u O’o Vent; aerosol flux and SO2 lifetime. Geophys Res Lett 29(16). doi:10.1029/2002GL014744

  • Rymer H, van Wyk de Vries B, Stix J, Williams-Jones G (1998) Pit crater structure and processes governing persistent activity at Masaya Volcano, Nicaragua. Bull Volcanol 59:345–355

    Article  Google Scholar 

  • Smithsonian Institution (2006) Masaya. Bull Glob Volcanism Netw 31(4)

  • Stix J (2007) Stability and instability of quiescently active volcanoes: the case of Masaya, Nicaragua. Geol 35(6):535–538. doi:10.1130/G23198A.1

    Article  Google Scholar 

  • Stoiber RE, Jepsen A (1973) Sulfur dioxide contributions to the atmosphere by volcanoes. Sci 182:577–578

    Article  Google Scholar 

  • Stoiber RE, Malinconico LL, Williams SN (1983) Use of the correlation spectrometer at volcanoes. In: Tazieff H, Sabroux JC (eds) Forecasting Volcanic Events. Elsevier, New York, pp 424–444

    Google Scholar 

  • Stoiber RE, Williams SN, Huebert BJ (1986) Sulfur and halogen gases at Masaya caldera complex, Nicaragua: total flux and variations with time. J Geophys Res 91:12215–12231

    Article  Google Scholar 

  • Taylor PA, Lee RJ (1984) Simple guidelines for estimating wind speed variations due to small scale topographic features. Climatol Bull 18:3–32

    Google Scholar 

  • Wallace PJ, Carn SA, Rose WI, Bluth GJS, Gerlach T (2003) Integrating petrologic and remote sensing perspectives on magmatic volatiles and volcanic degassing. EOS, Trans, Am Geophys Union 84(42):441, 446–447

    Article  Google Scholar 

  • Watson IM, Oppenheimer C (2000) Particle size distributions of Mount Etna’s aerosol plume constrained by Sun photometry. J Geophys Res 105:9823–2829

    Article  Google Scholar 

  • Watson IM, Oppenheimer C (2001) Photometric observations of Mt. Etna’s different aerosol plumes. Atmos Environ 35:3561–3572

    Article  Google Scholar 

  • Williams-Jones G, Stix J, Heiligmann M, Barquero J, Fernandez E, Duarte Gonzalez E (2001) A model of degassing and seismicity at Arenal Volcano, Costa Rica. J Volcanol Geotherm Res 108(1–4):121–141

    Article  Google Scholar 

  • Williams-Jones G, Rymer H, Rothery DA (2003) Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua. J Volcanol Geotherm Res 123(1–2):137–160

    Article  Google Scholar 

  • Williams-Jones G, Horton KA, Elias T, Garbeil H, Mouginis-Mark PJ, Sutton AJ, Harris AJL (2006) Accurately measuring volcanic plume velocity with multiple UV spectrometers. Bull Volcanol 68:328–332

    Article  Google Scholar 

  • Williams-Jones G, Stix J, Nadeau PA (2008) Using the COSPEC in the field. In: Williams-Jones G, Stix J, Hickson C (eds) The COSPEC Cookbook: Making SO2 Gas Measurements at Active Volcanoes. IAVCEI Methods in Volcanol, 1, pp. 63–119, <http://www.iavcei.org/>

  • Witham CS, Oppenheimer C, Horwell CJ (2005) Volcanic ash-leachates: a review and recommendations for sampling methods. J Volcanol Geotherm Res 141:299–326

    Article  Google Scholar 

  • Zapata JA, Calvache ML, Cortés GP, Fischer TP, Garzon G, Gómez D, Narváez L, Ordóñez M, Ortega A, Stix J, Torres R, Williams SN (1997) SO2 fluxes from Galeras Volcano, Colombia, 1989–1995: Progressive degassing and conduit obstruction of a Decade Volcano. J Volcanol Geotherm Res 77:195–208

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by an NSERC Discovery grant to G. Williams-Jones and would not have been possible without the help of many people. We would like to thank K. Horton, N. O’Neill, and J. Porter for their input and for loaning equipment; L. Rodríguez and M. Watson for aerosol software; A. Bérubé, M. Gagnon, G. Mauri, G. Pépin, and K. Simpson for help with field work; and D. Steyn for insight into the acceleration of wind over topography. The support of the staff of Parque Nacional Volcán Masaya and INETER is greatly appreciated. Suggestions from J. Stix, D. Allen, K. Simpson, and two anonymous reviewers substantially improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. Nadeau.

Additional information

Editorial responsibility: P. Delmelle

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nadeau, P.A., Williams-Jones, G. Apparent downwind depletion of volcanic SO2 flux—lessons from Masaya Volcano, Nicaragua. Bull Volcanol 71, 389–400 (2009). https://doi.org/10.1007/s00445-008-0251-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-008-0251-9

Keywords

  • Masaya volcano
  • Persistent volcanic degassing
  • Sulfur dioxide
  • Topographic effects
  • Volcano monitoring
  • FLYSPEC