Skip to main content

Pyroclastic density currents resulting from the interaction of basaltic magma with hydrothermally altered rock: an example from the 2006 summit eruptions of Mount Etna, Italy

Abstract

After 16 months of quiescence, Mount Etna began to erupt again in mid-July 2006. The activity was concentrated at and around the Southeast Crater (SEC), one of the four craters on the summit of Etna, and eruptive activity continued intermittently for 5 months. During this period, numerous vents displayed a wide range of eruptive styles at different times. Virtually all explosive activities took place at vents at the summit of the SEC and on its flanks. Eruptive episodes, which lasted from 1 day to 2 weeks, became shorter and more violent with time. Volcanic activity at these vents was often accompanied by dramatic mass-wasting processes such as collapse of parts of the cone, highly unusual flowage processes involving both old rocks and fresh magmatic material, and magma–water interaction. The most dramatic events took place on 16 November, when numerous rockfalls and pyroclastic density currents (PDCs) were generated during the opening of a large fracture on the SE flank of the SEC cone. The largest PDCs were clearly triggered explosively, and there is evidence that much of the energy was generated during the interaction of intruding magma with wet rocks on the cone’s flanks. The most mobile PDCs traveled up to 1 km from their source. This previously unknown process on Etna may not be unique on this volcano and is likely to have taken place on other volcanoes. It represents a newly recognized hazard to those who visit and work in the vicinity of the summit of Etna.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Acocella V, Neri M (2003) What makes flank eruptions? The 2001 Etna eruption and its possible triggering mechanism. Bull Volcanol 65:517–529, DOI 10.1007/s00445-003-0280-3

    Article  Google Scholar 

  • Aiuppa A, Allard P, D’Alessandro W, Michel A, Parello F, Treuil M, Valenza M (2000) Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochim Cosmochim Acta 64:1827–1841

    Article  Google Scholar 

  • Aiuppa A, Federico C, Giudice G, Gurrieri S, Liuzzo M, Moretti R, Shinohara H, Valenza M (2007) Real-time detection of volcanic plume H2O, CO2 and SO2 as a precursor to 2006 Mt. Etna eruptions. Geophys Res Abstr 9:01863

    Google Scholar 

  • Alparone S, Andronico D, Giammanco S, Lodato L (2004) A multidisciplinary approach to detect active pathways for magma migration and eruption in a basaltic volcano: the upper southern flank of Mt. Etna (Sicily, Italy) before the 2001 eruption. J Volcanol Geotherm Res 136:121–140, DOI 10.1016/j.jvolgeores.2004.05.014

    Article  Google Scholar 

  • Andronico D, Branca S, Calvari S, Burton MR, Caltabiano T, Corsaro RA, Del Carlo P, Garfì G, Lodato L, Miraglia L, Muré F, Neri M, Pecora E, Pompilio M, Salerno G, Spampinato L (2005) A multi-disciplinary study of the 2002–03 Etna eruption: insights for into a complex plumbing system. Bull Volcanol 67:314–330, DOI 10.1007/s00445-004-0372-8

    Article  Google Scholar 

  • Aubert M (1999) Practical evaluation of steady heat discharge from dormant active volcanoes: case study of Vulcarolo fissure (Mount Etna, Italy). J Volcanol Geotherm Res 92:413–429, DOI 10.1016/S0377-0273(99)00088-8

    Article  Google Scholar 

  • Aubert M, Baubron JC (1988) Identification of a hidden thermal fissure in volcanic terrain, using a combination of hydrothermal convection indicators and soil–atmosphere analysis. J Volcanol Geotherm Res 35:217–225, DOI 10.1016/0377-0273(88)90018-2

    Article  Google Scholar 

  • Aubert M, Auby R, Bourlet Y, Bourlet F (1984) Contribution à la surveillance de l’activité de l’Etna à partir de l’étude des zones fumerolliennes. Bull Volcanol 47:1039–1050, DOI 10.1007/BF01952359

    Article  Google Scholar 

  • Baxter PJ, Neri A, Todesco M (1998) Physical modelling and human survival in pyroclastic flows. Nat Hazards 17:163–176, DOI 10.1023/A:1008031004183

    Article  Google Scholar 

  • Behncke B, Neri M (2003) The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476, DOI 10.1007/s00445-003-0274-1

    Article  Google Scholar 

  • Behncke B, Neri M, Carniel R (2003) An exceptional case of endogenous lava dome growth spawning pyroclastic avalanches: the 1999 Bocca Nuova eruption of Mt. Etna (Italy). J Volcanol Geotherm Res 24:115–128, DOI 10.1016/S0377-0273(03)00072-6

    Article  Google Scholar 

  • Behncke B, Neri M, Nagay (2005) Lava flow hazard at Mount Etna (Italy): new data from a GIS-based study. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows. Geological Society of America Special Paper 396:189–209, DOI 10.1130/2005.2396(13)

  • Behncke B, Neri M, Pecora E, Zanon V (2006) The exceptional activity and growth of the Southeast Crater, Mount Etna (Italy), between 1996 and 2001. Bull Volcanol 69:149–173, DOI 10.1007/s00445-006-0061-x

    Article  Google Scholar 

  • Berner EK, Berner RA (1996) Global environment: water, air, and geochemical cycles. Prentice-Hall, New Jersey

    Google Scholar 

  • Bertagnini A, Calvari S, Coltelli M, Landi P, Pompilio M, Scribano V (1990) The 1989 eruptive sequence. In: Barberi F, Bertagnini A, Landi P (eds) Mt. Etna: the 1989 eruption. CNR-GNV Giardini, Pisa, pp 10–22

    Google Scholar 

  • Brand BD, White CM (2004) Base-surge mechanisms and structures, an example from Sinker Hole, ID, Western Snake River Plain. Geol Soc Am Abstr Prog 36(4):84

    Google Scholar 

  • Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc London Mem 27:1–143

    Google Scholar 

  • Brusca L, Aiuppa A, D’Alessandro W, Parello F, Allard P, Michel A (2001) Geochemical mapping of magmatic gas–water–rock interactions in the aquifer of Mount Etna volcano. J Volcanol Geotherm Res 108:199–218, DOI 10.1016/S0377-0273(00)00286-9

    Article  Google Scholar 

  • Burton MR, Neri M, Andronico D, Branca S, Caltabiano T, Calvari S, Cosaro RA, Del Carlo P, Lanzafame G, Lodato L, Miraglia L, Salerno G, Spampinato L (2005) Etna 2004–2005: an archetype for geodynamically-controlled effusive eruptions. Geophys Res Lett 32:L09303, DOI 10.1029/2005GL022527

    Article  Google Scholar 

  • Burton M, Caltabiano T, Bruno N, La Spina A, Longo V, Murè F, Randazzo D, Salerno G (2006) Aggiornamento eruzione al 27 Ottobre 2006: composizione e flusso di gas emesso dell’Etna. INGV-CT report UFVG2006/125:1–4

  • Calvari S, the INGV–Sezione di Catania scientific staff (2001) Multidisciplinary approach yields insight into Mt. Etna 2001 eruption. EOS Trans Am Geophys Union 82:653–656

    Article  Google Scholar 

  • Calvari S, Behncke B (2006) Etna: lava flows from multiple vents during 22 September to 4 November. Bull Glob Volcanism Netw 31(10):2–3

    Google Scholar 

  • Calvari S, Behncke B (2007) Etna: episodes of eruptions continue between 4 November and 14 December 2006. Bull Glob Volcanism Netw 32(2):22–26

    Google Scholar 

  • Calvari S, Pinkerton H (2002) Instabilities in the summit region of Mount Etna during the 1999 eruption. Bull Volcanol 63:526–535, DOI 10.1007/s004450100171

    Article  Google Scholar 

  • Calvari S, Coltelli M, Müller W, Pompilio M, Scribano V (1994a) Eruptive history of South-Eastern crater of Mount Etna, from 1971 to 1994. Acta Vulcanol 5:11–14

    Google Scholar 

  • Calvari S, Coltelli M, Neri M, Pompilio M, Scribano V (1994b) The 1991–93 Etna eruption: chronology and lava flow field evolution. Acta Vulcanol 4:1–14

    Google Scholar 

  • Calvari S, Neri M, Pinkerton H (2002) Effusion rate estimations during the 1999 summit eruption on Mt. Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107–123

    Article  Google Scholar 

  • Calvari S, Lodato L, Neri M, Behncke B, Norini G, Consoli O (2006) Changes in morphology of SE Crater and the emission of lava flows to the SSE. Bull Glob Volcanism Netw 31(8):2–3

    Google Scholar 

  • Chester DK, Duncan AM, Guest JE, Kilburn CRJ (1985) Mount Etna. The anatomy of a volcano. Chapman and Hall, London

    Google Scholar 

  • Coltelli M, Del Carlo P, Vezzoli L (1998) Discovery of a Plinian basaltic eruption of Roman age at Etna volcano, Italy. Geology 26:1095–1098, DOI 10.1130/0091-7613 026<1095:DOAPBE>2.3.CO;2

    Article  Google Scholar 

  • Corsaro RA, Cristofolini R, Patanè L (1996) The 1669 eruption at Mount Etna: chronology, petrology and geochemistry, with inferences on the magma sources and ascent mechanisms. Bull Volcanol 58:348–358, DOI 10.1007/s004450050144

    Article  Google Scholar 

  • Cosentino M (1974) Il regime pluviometrico sull’ Etna negli anni 1921–1971. Atti Acc Gioenia Sci Nat 6:37–52

    Google Scholar 

  • Crisci GM, Di Gregorio S, Rongo R, Scarpelli M, Spataro W, Calvari S (2003) Revisiting the 1669 Etnean eruptive crisis using a cellular automata model and implications for volcanic hazards in the Catania area. J Volcanol Geotherm Res 123:211–230, DOI 10.1016/S0377-0273(03)00037-4

    Article  Google Scholar 

  • CVGHM (Centre of Volcanology and Geological Hazard Mitigation) (2006) Merapi: mid-2006 brings multiple pyroclastic flows that kill two, and travel up to 7 km. Bull Glob Volcanism Netw 31(5):10–11

    Google Scholar 

  • De Rita D, Frazzetta G, Romano R (1991) The Biancavilla–Montalto ignimbrite (Etna, Sicily). Bull Volcanol 53:121–131, DOI 10.1007/BF00265417

    Article  Google Scholar 

  • Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions. Geol Soc London Spec Pub 145:145–182, DOI 10.1144/GSL.SP.1996.145.01.08

  • Duncan AM, Dibben C, Chester DK, Guest JE (1996) The 1928 eruption of Mount Etna volcano, Sicily, and the destruction of the town of Mascali. Disasters 20:1–20

    Article  Google Scholar 

  • Edmonds M, Herd RA (2005) Inland-directed base surge generated by the explosive interaction of pyroclastic flows and seawater at Soufrière Hills volcano, Montserrat. Geology 33:245–248, DOI 10.1130/G21166.1

    Article  Google Scholar 

  • Fisher RV (1995) Decoupling of pyroclastic currents: hazards assessments. J Volcanol Geotherm Res 66:257–263, DOI 10.1016/0377-0273(94)00075-R

    Article  Google Scholar 

  • Freundt A, Wilson CJN, Carey SN (2000) Ignimbrites and block-and-ash flow deposits. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 581–599

    Google Scholar 

  • Gemmellaro C (1843) Sulla eruzione del 17 Novembre 1843. Atti Accad Gioenia Sci Nat Catania 20:225–257

    Google Scholar 

  • Giammanco S, Ottaviani M, Valenza M, Veschetti E, Principio E, Giammanco G, Pignato S (1998a) Major and trace elements geochemistry in the ground waters of a volcanic area: Mount Etna (Sicily). Water Res 32:19–30, DOI 10.1016/S0043-1354(97)00198-X

    Article  Google Scholar 

  • Giammanco S, Inguaggiato S, Valenza M (1998b) Soil and fumarole gases of Mount Etna: geochemistry and relations with volcanic activity. J Volcanol Geotherm Res 81:297–310, DOI 10.1016/S0377-0273(98)00012-2

    Article  Google Scholar 

  • Giammanco S, Gurrieri S, Valenza M (1999) Geochemical investigations applied to active fault detection in a volcanic area: the North–East Rift on Mt. Etna (Sicily, Italy). Geophys Res Lett 26:2005–2008

    Article  Google Scholar 

  • Giammanco S, Ottaviani M, Veschetti E (2007) Temporal variability of major and trace elements concentrations in the groundwaters of Mt. Etna (Italy): effects of transient input of magmatic fluids highlighted by means of cluster analysis. Pure Appl Geophys 164:2523–2547, DOI 10.1007/s00024-007-0286-4

    Article  Google Scholar 

  • Guest JE, Murray JB, Kilburn CRJ, Lopes RMC, Fidzuk P (1980) An eyewitness account of the Bocca Nuova explosion on 12 September 1979. U.K. Research on Mount Etna, 1977–1979. The Royal Society, London, pp 44–46

    Google Scholar 

  • Haeni C (1931) Tätigkeit und Veränderungen am Etna seit dem Ausbruch von 1928 bis Ende 1930. Zeitsch Vulkanol 13:245–248

    Google Scholar 

  • Harris AJL, Neri M (2002) Volumetric observations during paroxysmal eruptions at Mount Etna: pressurized drainage of a shallow chamber or pulsed supply? J Volcanol Geotherm Res 116:79–95, DOI 10.1016/S0377-0273(02)00212-3

    Article  Google Scholar 

  • Hart K, Carey S, Sigurdsson H, Sparks RSJ, Robertson REA (2004) Discharge of pyroclastic flows into the sea during the 1996–1998 eruptions of the Soufrière Hills volcano, Montserrat. Bull Volcanol 66:599–614, DOI 10.1007/s00445-004-0342-1

    Article  Google Scholar 

  • Hochstein MP, Browne PRL (2000) Surface manifestations of geothermal systems with volcanic heat sources. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 835–855

    Google Scholar 

  • IGEPN (Instituto Geofísico, Escuela Politécnica Nacional) (2006) Actividad del Volcán Tungurahua—Agosto de 2006. Available at http://www.igepn.edu.ec/

  • Kieffer G (1979) L’explosion meurtrière du 12 septembre 1979 de l’Etna. CR Acad Sci Paris Ser D 289:1013–1016

    Google Scholar 

  • Kieffer G (1982) Les explosions phréatiques et phréatomagmatiques terminales à l’Etna. Bull Volcanol 44:655–660, DOI 10.1007/BF02597089

    Article  Google Scholar 

  • Lopez DL, Williams SN (1993) Catastrophic volcanic collapse; relation to hydrothermal processes. Science 260:1794–1796, DOI 10.1126/science.260.5115.1794

    Article  Google Scholar 

  • Martin U, Németh K (2007) Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary. J Volcanol Geotherm Res 159:164–178, DOI 10.1016/j.jvolgeores.2006.06.010

    Article  Google Scholar 

  • Mattox TN, Mangan MT (1997) Littoral hydrovolcanic explosions: a case study of lava–seawater interaction at Kilauea Volcano. J Volcanol Geotherm Res 75:1–17, DOI 10.1016/S0377-0273(96)00048-0

    Article  Google Scholar 

  • Morrissey M, Zimanowski B, Wohletz K, Büttner R (2000) Phreatomagmatic fragmentation. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 431–445

    Google Scholar 

  • Murray JB (1980) The Bocca Nuova: its history and possible causes of the September 1979 explosion. In: Huntingdon AT, Guest JE, Francis EH (eds) United Kingdom Research on Mount Etna 1977–1979. The Royal Society, London, pp 46–50

    Google Scholar 

  • Murray J, Décobecq D, Bond A (1989–1990) L’éruption paroxysmale du cratère Nordest de l’Etna du 24 Septembre 1986. LAVE Bulletin 22:11–23; 23:5–18; 24:11–21

    Google Scholar 

  • Németh K, Martin U (2007) Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159:138–152, DOI 10.1016/j.jvolgeores.2006.06.014

    Article  Google Scholar 

  • Neri M, Acocella V (2006) The 2004–2005 Etna eruption: implications for flank deformation and structural behaviour of the volcano. J Volcanol Geotherm Res 158:195–206, DOI 10.1016/j.jvolgeores.2006.04.022

    Article  Google Scholar 

  • Neri M, Acocella V, Behncke B (2004) The role of the Pernicana fault system in the spreading of Mt, Etna (Italy) during the 2002–2003 eruption. Bull Volcanol 66:417–430, DOI 10.1007/s00445-003-0322-x

    Article  Google Scholar 

  • Neri M, Acocella V, Behncke B, Maiolino V, Ursino A, Velardita R (2005) Contrasting triggering mechanisms of the 2001 and 2002–2003 eruptions of Mount Etna (Italy). J Volcanol Geotherm Res 144:235–255, DOI 10.1016/j.jvolgeores.2004.11.025

    Article  Google Scholar 

  • Neri M, Behncke B, Burton M, Galli G, Giammanco S, Pecora E, Privitera E, Reitano D (2006) Continuous soil radon monitoring during the July 2006 Etna eruption. Geophys Res Lett 33:L24316, DOI 10.1029/2006GL028394

    Article  Google Scholar 

  • Opfergelt S, Delmelle P, Boivin P, Delvaux B (2006) The 1998 debris avalanche at Casita volcano, Nicaragua: investigation of the role of hydrothermal smectite in promoting slope instability. Geophys Res Lett 33:L15305, DOI 10.1029/2006GL026661

    Article  Google Scholar 

  • Pérez W, Freundt A (2006) The youngest highly explosive basaltic eruptions from Masaya caldera (Nicaragua): stratigraphy and hazard assessment. Geol Soc Am Spec Pap 412:189–207, DOI 10.1130/2006.2412(10)

    Google Scholar 

  • Ponte G (1927) Il vulcarolo sull’Etna e la utilizzatzione del suo vapore aequeo. Boll Accad Gioenia Sci Nat 57(1–2):14–17

    Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29:779–782, DOI 10.1130/0091-7613 029<0779:VCPBHA>2.0.CO;2

    Article  Google Scholar 

  • ReliefWeb (2006–2007) Southeast Asia: typhoon durian—Dec 2006. Available at: http://www.reliefweb.int/rw/dbc.nsf/doc108?OpenForm&rc=3&emid=TC-2006-000175-PHL

  • Rowe GL, Brantley SL, Fernandez M, Fernandez JF, Borgia A, Barquero J (1992) Fluid-volcano interaction in an active stratovolcano—the crater lake system of Poas volcano, Costa Rica. J Volcanol Geotherm Res 49:23–51, DOI 10.1016/0377-0273(92)90003-V

    Article  Google Scholar 

  • Salerno G, Caltabiano T, Burton M, Bruno N, Longo E (2005) Anomalous degassing rates from Mt. Etna, 2001–2005. Geophys Res Abstr 7:10606

    Google Scholar 

  • Spence R, Kelman I, Brown A, Toyos G, Purser D, Baxter P (2007) Residential building and occupant vulnerability to pyroclastic density currents in explosive eruptions. Nat Hazards Earth Syst Sci 7:219–230

    Article  Google Scholar 

  • Steiner A (1977) The Wairakei geothermal area, North Island, New Zealand. N Z Geol Surv Bull 90:1–136

    Google Scholar 

  • Tanguy J-C, Ribière C, Scarth A, Tjetjep WS (1998) Victims from volcanic eruptions: a revised database. Bull Volcanol 60:137–144, DOI 10.1007/s004450050222

    Article  Google Scholar 

  • Taylor GA (1963) Seismic and tilt phenomena preceding a Pelean type eruption from a basaltic volcano. Bull Volcanol 26:5–11, DOI 10.1007/BF02597269

    Article  Google Scholar 

  • Ui T, Takarada S, Yoshimoto M (2000) Debris avalanches. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 617–626

    Google Scholar 

  • Valentine GA, Fischer RV (2000) Pyroclastic surges and blasts. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 571–580

    Google Scholar 

  • Vallance JW (2000) Lahars. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 601–616

    Google Scholar 

  • Wehrmann H, Bonadonna C, Freundt A, Hougton BF, Kutterolf S (2006) Fontana Tephra: a basaltic Plinian eruption in Nicaragua. Geol Soc Am Spec Pap 412:209–223, DOI 10.1130/2006.2412(11)

    Google Scholar 

  • White JDL (2006) Impure coolants and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geotherm Res 74:155–170, DOI 10.1016/S0377-0273(96)00061-3

    Article  Google Scholar 

  • White JDL, Houghton B (2000) Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 495–511

    Google Scholar 

  • White JDL, Houghton B (2006) Primary volcaniclastic rocks. Geology 34:677–680, DOI 10.1130/G22346.1

    Article  Google Scholar 

  • White JDL, Schmincke H-U (1999) Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands). J Volcanol Geotherm Res 94:283–304, DOI 10.1016/S0377-0273(99)00108-0

    Article  Google Scholar 

  • Witham CS (2005) Volcanic disasters and incidents: a new database. J Volcanol Geotherm Res 148:91–233, DOI 10.1016/j.jvolgeores.2005.04.017

    Article  Google Scholar 

  • Wohletz KH (1986) Explosive magma–water interactions: thermodynamics, explosion mechanisms, and field studies. Bull Volcanol 48:245–264, DOI 10.1007/BF01081754

    Article  Google Scholar 

  • Yamamoto T, Takarada S, Suto S (1993) Pyroclastic flows from the 1991 eruption of Unzen volcano, Japan. Bull Volcanol 55:166–175, DOI 10.1007/BF00301514

    Article  Google Scholar 

  • Zimanowski B, Büttner R (2002) Dynamic mingling of magma and liquefied sediments. J Volcanol Geotherm Res 114:37–44, DOI 10.1016/S0377-0273(01)00281-5

    Article  Google Scholar 

  • Zimbelman DR, Watters RJ, Firth IR, Breit GN, Carrasco-Nuñez G (2004) Stratovolcano stability assessment methods and results from Citlaltépetl, Mexico. Bull Volcanol 66:66–79, DOI 10.1007/s00445-003-0296-8

    Article  Google Scholar 

Download references

Acknowledgements

A part of this research was funded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and by the Dipartimento per la Protezione Civile (Italy). We thank our colleagues at the INGV-CT, in particular Mike Burton and Giuseppe Salerno who provided the observations, photographs, and video footage of different phases of the events described in this paper; Giovanni Tomarchio of the Italian RAI television network, for letting us view his original video footage of the 16 November 2006 activity and pyroclastic density currents; Simone Genovese for providing still photographs and video footage of the same events; Nino Mazzaglia for sharing his unique and impressive photographic collection of the 2006 summit eruptions; Jane Applegarth for her photographs of the 16 November activity; and the helicopter pilots of the National Civil Defense Agency for flying us safely over the volcano during many crucial stages of the 2006 activity. Ken Wohletz is acknowledged for the very helpful thoughts and comments on an early version of the manuscript. The very inspiring and stimulating reviews by Greg Valentine and James White helped to bring out more strongly the essence of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Behncke.

Additional information

Editorial responsibility: JDL White

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Behncke, B., Calvari, S., Giammanco, S. et al. Pyroclastic density currents resulting from the interaction of basaltic magma with hydrothermally altered rock: an example from the 2006 summit eruptions of Mount Etna, Italy. Bull Volcanol 70, 1249–1268 (2008). https://doi.org/10.1007/s00445-008-0200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-008-0200-7

Keywords

  • Mount Etna
  • Pyroclastic density currents
  • Lava–water interaction
  • Hydrothermal alteration
  • Hazards
  • Volcano instability
  • 2006 eruption