Skip to main content

Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala

Abstract

The first of four successive pulses of the 1974 explosive eruption of Fuego volcano, Guatemala, produced a small volume (∼0.02 km3 DRE) basaltic sub-plinian tephra fall and flow deposit. Samples collected within 48 h after deposition over much of the dispersal area (7–80 km from the volcano) have been size analyzed down to 8 φ (4 µm). Tephra along the dispersal axis were all well-sorted (σ φ = 0.25–1.00), and sorting increased whereas thickness and median grain size decreased systematically downwind. Skewness varied from slightly positive near the vent to slightly negative in distal regions and is consistent with decoupling between coarse ejecta falling off the rising eruption column and fine ash falling off the windblown volcanic cloud advecting at the final level of rise. Less dense, vesicular coarse particles form a log normal sub-population when separated from the smaller (Mdφ < 3φ or < 0.125 mm), denser shard and crystal sub-population. A unimodal, relatively coarse (Mdφ = 0.58φ or 0.7 mm σ φ = 1.2) initial grain size population is estimated for the whole (fall and flow) deposit. Only a small part of the fine-grained, thin 1974 Fuego tephra deposit has survived erosion to the present day. The initial October 14 pulse, with an estimated column height of 15 km above sea level, was a primary cause of a detectable perturbation in the northern hemisphere stratospheric aerosol layer in late 1974 to early 1975. Such small, sulfur-rich, explosive eruptions may substantially contribute to the overall stratospheric sulfur budget, yet leave only transient deposits, which have little chance of survival even in the recent geologic record. The fraction of finest particles (Mdφ = 4–8φ or 4–63 µm) in the Fuego tephra makes up a separate but minor size mode in the size distribution of samples around the margin of the deposit. A previously undocumented bimodal–unimodal–bimodal change in grain size distribution across the dispersal axis at 20 km downwind from the vent is best accounted for as the result of fallout dispersal of ash from a higher subplinian column and a lower “co-pf” cloud resulting from pyroclastic flows. In addition, there is a degree of asymmetry in the documented grain-size fallout pattern which is attributed to vertically veering wind direction and changing windspeeds, especially across the tropopause. The distribution of fine particles (<8 µm diameter) in the tephra deposit is asymmetrical, mainly along the N edge, with a small enrichment along the S edge. This pattern has hazard significance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  • Anderson AT Jr. (1984) Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala. Amer Mineral 69(7–8):660–676

    Google Scholar 

  • Andres RJ, Rose WI, Stoiber RE, Williams SN, Matías O, Morales R (1993) A summary of sulfur dioxide emission rate measurements from Guatemalan volcanoes. Bull Volcanol 55:379–388

    Article  Google Scholar 

  • Baxter PJ (1999) Cristobalite in volcanic ash of the Soufriere Hills Volcano, Montserrat: hazards implications. Science 283:1142–1145

    Article  Google Scholar 

  • Bernstein RS, Baxter PJ, Falk H, Ing R, Foster L, Frost F (1986) Immediate health concerns and actions in volcanic eruptions: lesson from the Mount St Helens eruptions, May 18–October 18, 1980. Am J Public Health 76(suppl):25–37

    Google Scholar 

  • Bonadonna C, Houghton B (2005) Total grain size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–184

    Article  Google Scholar 

  • Bonadonna C, Mayberry GC, Calder ES, Sparks RSJ, Choux C, Jackson, P, Lejeune AM, Loughlin SC, Norton GE, Rose WI, Ryan G, Young SR (2002) Tephra fallout in the eruption of Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc London Mem 21:483–516

  • Brazier S, Davis AN, Sigurdsson H, Sparks RSJ (1982) Fallout and deposition of volcanic ash during the 1979 explosive eruption of the Soufriere of St. Vincent. . J Volcanol Geotherm Res 144:335–359

    Article  Google Scholar 

  • Brazier S, Sparks RSJ, Carey SN, Sigurdsson H, Westgate JA (1983) Bimodal grain size distribution and secondary thickening in air-fall ash layers. Nature 301:115–119

    Article  Google Scholar 

  • Buist AS, Martin TR, Short JH, Butler J, Lybarger JA (1986) The development of a multidisciplinary plan for evaluation of long-term health effects of the Mount St Helens eruptions. Am J Public Health 76(suppl):39–44

    Google Scholar 

  • Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. J Geophys Res 87:7061–7072

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1986) The 1982 eruptions of El Chichón volcano, Mexico (2): Observations and numerical modelling of tephra-fall distribution. Bull Volcanol 48:127–142

    Article  Google Scholar 

  • Carey SN, Sparks RSJ (1986) Quantitative models of the fall out and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–126

    Article  Google Scholar 

  • Carr MJ, Rose WI (1987) CENTAM—a data base of Central American volcanic rocks. J Volcanol Geotherm Res 33(Stoiber Volume):239–240

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Unwin Hyman, London

    Google Scholar 

  • Chesner CA, Rose WI (1984) Geochemistry and evolution of the Fuego volcanic complex, Guatemala. J Volcanol Geotherm Res 21:25–44

    Article  Google Scholar 

  • Chesner CA, Halsor SP (1997) Geochemical trends of sequential lava flows from Meseta volcano, Guatemala. J Volcanol Geotherm Res 78:221–237

    Article  Google Scholar 

  • Cioni R, Marianelli P, Santacroce R, Sbrana A (2000) Plinian and Subplinian eruptions. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic, San Diego, pp 477–495

    Google Scholar 

  • Davies DK, Quearry MW, Bonis SB (1978) Glowing avalanches from the 1974 eruption of the volcano Fuego, Guatemala. Geol Soc Amer Bull 89:369–384

    Article  Google Scholar 

  • Draxler RR, Hess GD (1998) An overview of the Hysplit 4 modeling system for trajectories, dispersion and deposition. Aust Meteorol Mag 47:295–308

    Google Scholar 

  • Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke AB, Cole PD, Harford CL, Herd RA, Luckett R, Ryan G, Voight B (2002) Episodes of repetitive Vulcanian explosions and fountain collapse at Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999, Geol Soc London, Mem 21:

  • Ernst GGJ (1996) Dynamics of sediment-laden plumes. Ph D Thesis, U Bristol, UK

    Google Scholar 

  • Ernst GGJ, Davis JP, Sparks RSJ (1994) Bifurcation of volcanic plumes in a crosswind. Bull Volcanol 65:159–169

    Article  Google Scholar 

  • Fisher RV, Schmincke H-U (1983) Pyroclastic rocks. Springer-Verlag, Berlin

    Google Scholar 

  • Freundt A, Wilson CJN, Carey SN (2000) Ignimbrites and block-and-ash flow deposits. In: Sigurdsson H (ed) Encyclopedia of Volcanology. Academic, San Diego, pp 581–599

    Google Scholar 

  • Gardner CA, Cashman KV, Neal CA (1998) Tephra fall deposits from the 1992 eruption of Crater Peak, Alaska: implications of clast textures for eruptive products. Bull Volcanol 59:537–555

    Article  Google Scholar 

  • Gardner JE, Thomas RME, Jaupart C, Tait S (1996) Fragmentation of magma during Plinian volcanic eruptions. Bull Volcanol 58:144–162

    Article  Google Scholar 

  • Harris DM, Anderson AT (1984) Volatiles H2O, CO2, and Cl in a subduction related basalt. Contrib Mineral Petrol 87(2):120–128

    Article  Google Scholar 

  • Herzog M, Graf HF, Textor C, Oberhuber JM (1998) The effect of phase changes of water on the development of volcanic plumes. J Volcanol Geotherm Res 87:55–74

    Article  Google Scholar 

  • Hildreth W, Drake RE (1992) Volcán Quizapu, Chilean Andes. Bull Volcanol 54:93–125

    Article  Google Scholar 

  • Hoffman DJ, Rosen JM (1977) Balloon observations of the time development of the stratospheric aerosol event of 1974–75. J Geophys Res 82:1435–1440

    Article  Google Scholar 

  • Huang TC, Watkins ND, Shaw DM (1975) Atmospherically transported volcanic glass in deep-sea sediments: development of a separation and counting technique. Deep-Sea Res 22:185–196

    Google Scholar 

  • Inman DL (1952) Measures of describing the size distribution of sediments. J Sediment Petrol 22:125–145

    Google Scholar 

  • Keller J (1980) The island of Vulcano. Soc Italiana Min Petr 36:368–413

    Google Scholar 

  • Krotkov NA, Torres O, Seftor C, Krueger AJ, Kostinski A, Rose WI, Bluth GJS, Schneider DJ, Shaefer SJ (1998) Comparison of TOMS and AVHRR volcanic ash retrievals from the August 1992 eruption of Mount Spurr. Geophys Res Lett 26:455–458

    Article  Google Scholar 

  • Lazrus AL, Cadle RD, Gandrud BW, Greenberg JP, Huebert BJ, Rose WI (1979) Sulfur and halogen chemistry of the stratosphere and of volcanic eruption plumes. J Geophys Res 84:7869–7875

    Article  Google Scholar 

  • LeBas MJ, LeMaitre RW, Streckeisen AL, Zanetin B (1986) A chemical classification of volcanic rocks based on the alkali-solica diagram. J Petrol 27:745–750

    Google Scholar 

  • Martin DP, Rose WI (1981) Behavior patterns of Fuego volcano, Guatemala. J Volcanol Geotherm Res 10:67–81

    Article  Google Scholar 

  • McBirney AR (1973) Factors governing the intensity of andesitic eruptions. Bull Volcanol 37:443–453

    Article  Google Scholar 

  • McCormick MP et al (1978) Post-volcanic stratospheric aerosol decay as measured by Lidar. J Atmos Sci 35:1296–1305

    Article  Google Scholar 

  • Meinel AB, Meinel MP (1975) Stratospheric dust-aerosol event of November 1974. Science 188:477–478

    Article  Google Scholar 

  • Morrissey MM, Mastin LG (2000) Vulcanian eruptions. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic, San Diego, pp 463–476

    Google Scholar 

  • Murrow PJ, Rose WI, Self S (1980) Determination of the total grain size distribution in a vulcanian eruption column, and its implications to stratospheric aerosol perturbation. Geophys Res Lett 7:893–896

    Article  Google Scholar 

  • Nairn IA, Hewson CAY, Latter JH, Wood CP (1976) Pyroclastic eruptions of Ngauruhoe Volcano, central North Island, New Zealand, 1974 January and March. In: Johnson RW (ed) Volcanism in Australasia. Elsevier, Amsterdam, pp 385–405

    Google Scholar 

  • Nairn IA, Self S (1978) Explosive eruptions and pyroclastic avalanches from Ngauruhoe in February 1975. J Volcanol Geotherm Res 3:39–60

    Article  Google Scholar 

  • Neal CA, McGimsey RG, Gardner CA, Harbin ML, Nye CJ (1994) Tephra fall deposits from the 1992 eruptions of Crater Peak. Mount Spurr Volcano, Alaska: a preliminary report on distribution, stratigraphy and composition. U S G S Bulletin 2139:65–79

    Google Scholar 

  • Newell RE (1970) Stratospheric temperature change from the Mt. Agung volcanic eruption of 1963. J Atmos Sci 27:977–978

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Article  Google Scholar 

  • Pyle DM (1990) New estimates for the volume of the Minoan eruption. In Thera and the Aegean World III. Proceedings of the Third International Congress, Santorini, Greece, 3–9 September 1989, Vol 2, pp 113–121

  • Rampino R, Self S (1984) Sulphur-rich volcanic eruptions and stratospheric aerosols. Nature 310:677–679

    Article  Google Scholar 

  • Riley CM, Rose WI, Bluth GJS (2003) Quantitative shape measurements of distal volcanic ash. Jour Geophys Res 108, no B10-2504 DOI 10.1029/2001JB000818

  • Roggensack K (2001) Unraveling the 1974 eruption of Fuego Volcano (Guatemala) with small crystals and their young melt inclusions. Geology 29(10):911–914

    Article  Google Scholar 

  • Rose WI (1977) Scavenging of volcanic aerosol by ash: atmospheric and volcanologic implications. Geology 5:621–624

    Article  Google Scholar 

  • Rose WI, Anderson AT, Woodruff LG, Bonis SB (1978) The October 1974 basaltic tephra from Fuego volcano: description and history of the magma body. J Volcanol Geotherm Res 4:3–53

    Article  Google Scholar 

  • Rose WI, Bluth GJS, Schneider DJ, Ernst GGJ, Riley CM, McGimsey RG (2001) Observations of 1992 Crater Peak/Spurr Volcanic Clouds in their first few days of atmospheric residence. J Geology 109:677–694

    Article  Google Scholar 

  • Rose WI, Bonis S, Stoiber RE, Keller M, Bickford T (1973) Studies of volcanic ash from two recent Central American eruptions. Bull Volcanol 37:338–364

    Article  Google Scholar 

  • Rose WI, Chuan RL, Cadle RD, Woods DC (1980) Small particles in volcanic eruption clouds. Amer Jour Sci 280:671–696

    Article  Google Scholar 

  • Rose WI, Delene DJ, Schneider DJ, Bluth GJS, Krueger AJ, Sprod I, McKee C, Davies HL, Ernst GGJ (1995) Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects. Nature 375:477–479

    Article  Google Scholar 

  • Rose WI, Wunderman RL, Hoffman MF, Gale L (1983) A volcanologist’s review of atmospheric hazards of volcanic activity: Fuego and Mount St. Helens. J Volcanol Geotherm Res 17:133–157

    Article  Google Scholar 

  • Rose WI, Stoiber RE, Malinconico LL (1982) Eruptive gas compositions and fluxes of explosive volcanoes; budget of S and Cl emitted from Fuego Volcano, Guatemala. In: Thorpe RS (ed) Andesites: Orogenic Andesites and Related Rocks. Wiley & Sons, Chichester, United Kingdom, pp 669–676

    Google Scholar 

  • Sarna-Wojicki AM, Shipley S, Waitt RB, Dzurisin D, Wood SH (1981) Areal distribution, thickness, mass, volume and grain size of air-fall ash from the six major eruptions of 1980. US Geol Surv Prof Paper 1250:667–681

    Google Scholar 

  • Scasso RA, Corbella H, Tiberi P (1994) Sedimentalogical analysis of the tephra from the 12–15 August 1991 eruption of Hudson Volcano. Bull Volcanol 56:121–132

    Google Scholar 

  • Schneider DJ, Rose WI, Coke LR, Bluth GJS, Sprod I, Krueger AJ (1999) Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR. J Geophys Res 104:4037–4050

    Article  Google Scholar 

  • Self S (1975) Explosive activity of Ngauruhoe, 27–30 March 1974. NZ J Geol Geophys 18:189–195

    Google Scholar 

  • Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117:619–635

    Article  Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas—a review and analysis. J Volcanol Geotherm Res 3:1–37

    Article  Google Scholar 

  • Sparks RSJ (1997) Causes and consequences of pressurization in lava dome eruptions. Earth Planet Sci Lett 150:177–189

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley & Sons, Chichester

    Google Scholar 

  • Sparks RSJ, Walker GPL (1977) The significance of vitric-enriched airfall ashes associated with crystal enriched ignimbrites. J Volcanol Geotherm Res 2:329–341

    Article  Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of ? the 1875 eruption of Askja, Iceland. Phil Trans Roy Soc London 299:241–273

    Article  Google Scholar 

  • Stoiber RE (1974) Eruption of Volcan Fuego—October 14, 1974. Bull Volcanol 38:861–869

    Article  Google Scholar 

  • Textor C, Graf HF, Herzog M, Oberhuber JM, Rose WI, Ernst GGJ (2006a) Volcanic particle aggregation in explosive eruption columns. Part I: Parameterization of the microphysics of hydrometeors and ash. J Volcanol Geotherm Res 150:359–377

    Article  Google Scholar 

  • Textor C, Graf HF, Herzog M, Oberhuber JM, Rose WI, Ernst GGJ (2006b) Volcanic particle aggregation in explosive eruption columns. Part II: Numerical Experiments. J Volcanol Geoth Res 150:378–394

    Article  Google Scholar 

  • Vallance JW, Siebert L, Rose WI, Giron JR, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geotherm Res 66:337–355

    Article  Google Scholar 

  • Varekamp JC, Luhr JF, Prestegaard KL (1984) The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J Volcanol Geotherm Res 23:39–68

    Article  Google Scholar 

  • Volz FE (1975) Volcanic twilights from the Fuego eruption. Science 189:48–50

    Article  Google Scholar 

  • Wadge G (1980) Output rate of magma from active central volcanoes. Macmillan Journals, London, United Kingdom

    Google Scholar 

  • Walker GPL (1981) Characteristics of two phreatoplinian ashes, and their water-flushed origin. J Volcanol Geotherm Res 9:395–407

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446

    Article  Google Scholar 

  • Walker GPL (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption. J Volcanol Geotherm Res 8:69–94

    Article  Google Scholar 

  • Walker GPL (1981b) Generation and dispersal of fine ash and dust by volcanic eruptions. J Volcanol Geotherm Res 11:81–94

    Article  Google Scholar 

  • Walker GPL (1982) Eruptions of andesitic volcanoes. In: Thorpe RS (ed) Andesites. Wiley & Sons, New York, pp 403–413

    Google Scholar 

  • Walker GPL, Self S, Wilson L (1984) Tarawera 1886, New Zealand—a basalticPlinian fissure eruption. J Volcanol Geotherm Res 21:61–78

    Article  Google Scholar 

  • Wen S, Rose WI (1994) Retrieval of particle sizes and masses in volcanic clouds using AVHRR bands 4 and 5. J Geophys Res 99:5421–5431

    Article  Google Scholar 

  • Wilson L, Huang TC (1979) The influence of shape on the atmospheric settling velocity of volcanic ash particles. Earth Planet Sci Lett 44:311–324

    Article  Google Scholar 

  • Wohletz KH, Sheridan MF, Brown WK (1989) Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash. J Geophys Res 94:15703–15721

    Article  Google Scholar 

  • Wright JV, Smith AL, Self S (1980) A working terminology of pyroclastic deposits. J Volcanol Geotherm Res 8:315–336

    Article  Google Scholar 

  • Young SR, Sparks RSJ, Aspinall WP, Lynch LL, Miller AD, Robinson REA, Shepherd JP (1998) Overview of the eruption of Soufrière Hills Volcano, Montserrat, July 18, 1995 to December 1997. Geophys Res Lett 25:3389-3392

    Article  Google Scholar 

Download references

Acknowledgements

Once again, Samuel B. Bonis is gratefully acknowledged for his sample collection prowess. Jocelyn McPhie, Jacqueline Huntoon and two anonymous reviewers helped to clarify the text and figures. We thank the technical staff at the Institute of Materials Processing, MTU, for their help in Coulter counter analysis. WIR was supported by NSF and NASA. SS received support from NASA grant NSG5131 for the study of atmospheric effects of volcanic eruptions. GGJE was helped by interactions with RSJ Sparks, J Willson, and C Bonadonna, and support from the Nuffield Foundation (NUF-NAL award). The University of Cambridge Physical Geography Laboratories generously allowed AJD use of the Malvern Room facility; in particular Claire Horwell, Steve Boreham and Chris Rolfe are thanked for their assistance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. I. Rose.

Additional information

Editorial responsibility: H Delgado

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rose, W.I., Self, S., Murrow, P.J. et al. Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala. Bull Volcanol 70, 1043–1067 (2008). https://doi.org/10.1007/s00445-007-0187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-007-0187-5

Keywords

  • Volcanic ash
  • Tephra
  • Subplinian
  • Vulcanian
  • Fallout
  • Guatemala
  • Fuego