Advertisement

Bulletin of Volcanology

, Volume 70, Issue 9, pp 1023–1029 | Cite as

Large vesicles record pathways of degassing at basaltic volcanoes

  • Margherita Polacci
  • Don R. Baker
  • Liping Bai
  • Lucia Mancini
Research Article

Abstract

Volcanic degassing is directly linked to magma dynamics and controls the style of eruptive activity. To better understand how gas is transported within basaltic magma we perform a 3D investigation of vesicles preserved in scoria from the 2005 activity at Stromboli volcano (Italy). We find that clasts are characterized by the ubiquitous occurrence of one to a few large vesicles, exhibiting mostly irregular, tortuous, channel-like textures, orders of magnitude greater in volume than all the other vesicles in the sample. We compare observations on natural samples with results from numerical simulations and experimental investigations of vesicle size distributions and demonstrate that this type of vesicle invariably forms in magmas with vesicularities > 0.30 (and possibly > 0.10). We suggest that large vesicles represent pathways used by gas to flow non-explosively to the surface and that they indicate the development of an efficient system that sustains persistent degassing in basaltic systems.

Keywords

Basaltic magmas Degassing 3D vesicle textures 

Notes

Acknowledgements

We thank the SYRMEP beamline of Elettra Sincrotrone Trieste, Stefano Favretto and Livia Colò for their help in the acquisition of tomographic images of natural samples and Mark Rivers of GeoSoilEnviroCARS, Advanced Photon Source, for his help with microtomography of the experimental samples. We also thank Daniele Andronico, Mauro Rosi and Mario Zaia for sample collection. Thoughtful reviews by N. Métrich and an anonymous reviewer greatly improved the manuscript. This work was supported by Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento per la Protezione Civile, and NSERC Discovery grant to D.R.B.

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  2. Allard P, Carbonnelle J, Métrich N, Loyer H, Zettwoog P (1994) Sulphur output and magma degassing budget of Stromboli volcano. Nature 368:326–330CrossRefGoogle Scholar
  3. Andronico D, Caruso S, Cristaldi A, Del Carlo P (2005) Rapporto sulle ceneri emesse dal vulcano Stromboli nel semestre Gennaio-Giugno 2005. UFVG report Prot. Int. no. UFVG2005/72Google Scholar
  4. Andronico D, Cristaldi A, Del Carlo P (2006a) Caratterizzazione delle ceneri emesse dal vulcano Stromboli nel periodo Luglio-Dicembre 2005. UFVG report Prot. Int. no. UFVG2006/25Google Scholar
  5. Andronico D, Corsaro RA, Cristaldi A, Polacci M (2006b) Monitoring highly energetic Strombolian activity at Stromboli volcano (Aeolian Islands, Italy): the example of the 9 January 2005 explosive event. Geophys Res Abstr 8 02305Google Scholar
  6. Baker DR, Freda C (1999) Ising models of undercooled binary system crystallization: comparison with experimental and pegmatite textures. Am Mineral 84:725–732Google Scholar
  7. Bertagnini A, Coltelli M, Landi P, Pompilio M, Rosi M (1999) Violent explosions yield new insights into dynamics of Stromboli volcano. Eos Trans AGU 80:633–636CrossRefGoogle Scholar
  8. Bertagnini A, Métrich N, Landi P, Rosi M (2003) Stromboli volcano (Aeolian Archipelago, Italy): An open window on the deep-feeding system of a steady state basaltic volcano. J Geophys Res 108:2336–2350CrossRefGoogle Scholar
  9. Bunde A, Havlin S (1991) Fractals and disordered systems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. Burton MR, Mader HM, Polacci M (2007a) The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth Planet Sci Lett, DOI  10.1016/j.epsl.2007.08.028
  11. Burton MR, Allard P, Murè F, La Spina A (2007b) Magmatic gas composition reveals the source of Strombolian explosive activity. Science 317:227–230CrossRefGoogle Scholar
  12. Cashman KV, Mangan MT, Newman S (1994) Surface degassing and modifications to vesicle size distributions in Kilauea basalt. J Volcanol Geotherm Res 61:45–68CrossRefGoogle Scholar
  13. Corsaro RA, Miraglia L (2005) Attività di monitoraggio petrologico Stromboli-I semestre 2005. UFVG report Prot. Int. no. UFVG2005/70Google Scholar
  14. Corsaro RA, Miraglia L (2006) Attività di monitoraggio petrologico:Stromboli-II semestre 2005. UFVG report Prot. Int. no. UFVG2006/027Google Scholar
  15. Corsaro RA, Miraglia L, Zanon V (2005) Petrologic monitoring of glasses in the pyroclastites erupted in February 2004 by the Stromboli Volcano, Aeolian Islands, Southern Italy. J Volcanol Geotherm Res 139:339–343CrossRefGoogle Scholar
  16. Francalanci L, Tommasini S, Conticelli S (2004) The volcanic activity of Stromboli in the 1906–1998 AD period: mineralogical, geochemical and isotope data relevant to the understanding of the plumbing system. J Volcanol Geotherm Res 131:179–211CrossRefGoogle Scholar
  17. Francis PW, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557CrossRefGoogle Scholar
  18. Gaonach H, Lovejoy S, Stix J, Schertzer D (1996) A scaling growth model for bubbles in basaltic lava flows. Earth Planet Sci Lett 139:395–409CrossRefGoogle Scholar
  19. Harris AJL, Stevenson D (1997) Magma budgets and steady-state activity of Vulcano and Stromboli. Geophys Res Lett 24:1043–1046CrossRefGoogle Scholar
  20. Ketcham RA (2005) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1:32–41CrossRefGoogle Scholar
  21. Lautze NC, Houghton BF (2005) Physical mingling of magma and complex eruption dynamics in the shallow conduit at Stromboli volcano, Italy. Geology 33:425–428CrossRefGoogle Scholar
  22. Lorenz CD, Ziff RM (2001) Precise determination of the critical percolation threshold for the three-dimensional “Swiss cheese” model using a growth algorithm. J Chem Phys 114:3659–3661CrossRefGoogle Scholar
  23. Mangan MT, Cashman KV (1996) The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J Volcanol Geotherm Res 73:1–18CrossRefGoogle Scholar
  24. Mangan MT, Cashman KV, Newman S (1993) Vesiculation of basaltic magma during eruption. Geology 21:157–160CrossRefGoogle Scholar
  25. Métrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli volcano (Aeolian Islands). J Petrol 42:1471–1490CrossRefGoogle Scholar
  26. Métrich N, Bertagnini A, Landi P, Rosi M, Belhadj O (2005) Triggering mechanism at the origin of paroxysm at Stromboli (Aeolian Archipelago, Italy): the 5 April 2003 eruption. Geophys Res Lett 32:L10305, DOI  10.1029/2004GL022257 CrossRefGoogle Scholar
  27. Polacci M, Papale P (1997) The evolution of lava flows from ephemeral vents at Mount Etna: insights from vesicle distribution and morphological studies. J Volcanol Geotherm Res 76:1–17CrossRefGoogle Scholar
  28. Polacci M, Cashman KV, Kauahikaua JP (1999) Textural characterization of the pahoehoe–aa transition in Hawaiian basalt. Bull Volcanol 60:595–609CrossRefGoogle Scholar
  29. Polacci M, Corsaro RA, Andronico D (2006a) Coupled textural and compositional characterization of basaltic scoria: insights into the transition from Strombolian to fire-fountain activity at Mt Etna, Italy. Geology 3:201–204CrossRefGoogle Scholar
  30. Polacci M, Baker DR, Mancini L, Tromba G, Zanini F (2006b) Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett 33:L13312 DOI  10.1029/2006GL026241 CrossRefGoogle Scholar
  31. Ripepe M, Marchetti E, Ulivieri G, Harris A, Dehn J, Burton MR, Caltabiano T, Salerno G (2005) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33:341–344CrossRefGoogle Scholar
  32. Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli volcano (Italy). Bull Volcanol 62:294–300CrossRefGoogle Scholar
  33. Saar MO, Manga M (1999) Permeability–porosity relationship in vesicular basalts. Geophys Res Lett 26:111–114CrossRefGoogle Scholar
  34. Sable J, Houghton BF, Del Carlo P, Coltelli M (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast microtextures. J Volcanol Geotherm Res 158:333–354CrossRefGoogle Scholar
  35. Stauffer D, Aharony A (1994) Introduction to percolation theory, revised second edition. Taylor and Francis, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Margherita Polacci
    • 1
  • Don R. Baker
    • 2
    • 3
  • Liping Bai
    • 2
  • Lucia Mancini
    • 4
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaCataniaItaly
  2. 2.Earth and Planetary Sciences, GEOTOP-UQAM-McGill Research CentreMcGill UniversityMontrealCanada
  3. 3.Istituto Nazionale di Geofisica e VulcanologiaRomaItaly
  4. 4.SYRMEP Group, Sincrotrone Trieste S.C.p.A.Basovizza (Trieste)Italy

Personalised recommendations