Bulletin of Volcanology

, Volume 70, Issue 7, pp 877–893 | Cite as

Paleomagnetic evidence for low-temperature emplacement of the phreatomagmatic Peperino Albano ignimbrite (Colli Albani volcano, Central Italy)

  • M. PorrecaEmail author
  • M. Mattei
  • C. MacNiocaill
  • G. Giordano
  • E. McClelland
  • R. Funiciello
Research Article


The Peperino Albano (approximately 19–36 ka old) is a phreatomagmatic pyroclastic flow deposit, cropping out along the slopes of the associated Albano maar (Colli Albani volcano, Italy). The deposit exhibits lateral and vertical transitions from valley pond to veneer facies, as well as intracrater facies. We present the results of a paleomagnetic study of thermal remanent magnetization (TRM) of the lithic clasts of the Peperino Albano ignimbrite that provide quantitative estimates of the range of emplacement temperatures across the different facies of the ignimbrite. Emplacement temperatures estimated for the Peperino Albano ignimbrite range between 240° and 350°C, with the temperatures defined in the intracrater facies being generally lower than in the valley pond and veneer facies. This is possibly due to the large size of the sampled clasts in the intracrater facies which, when coupled with low temperature at the vent, were not completely heated throughout their volume during emplacement. The emplacement temperatures derived from the paleomagnetic results are in good agreement with the presence of un-burnt plants at the base of the ignimbrite, indicating that the temperature of the pyroclastic flow was lower than the temperature of ignition of wood. Paleomagnetic results from the Peperino Albano confirm the reliability of the paleomagnetic approach in defining the thermal history of pyroclastic flow deposits.


Emplacement temperature Paleomagnetism Pyroclastic flow Colli Albani 



We wish to thank Francesca Cifelli for field assistance and useful suggestions. Ciro Giampaolo provided us with useful information about the physical proprieties of zeolites. Journal reviewers R. Cioni and F. Speranza provided us with thoughtful and helpful reviews that enabled us to improve the manuscript.


  1. Aramaki S, Akimoto S (1957) Temperature estimation of pyroclastic deposits by natural remanent magnetism. Am J Sci 255:619–627CrossRefGoogle Scholar
  2. Banks NG, Hoblitt RP (1981) Summary of temperature studies of 1980 deposits. In: Lipman PW, Mullineaux DR (eds) The 1980 Eruptions of Mount St. Helens, Washington, USGS Professional Paper, pp 844Google Scholar
  3. Bardot L (2000) Emplacement temperature determinations of proximal pyroclastic deposits on Santorini, Greece, and their implications. Bull Volcanol 61:450–467CrossRefGoogle Scholar
  4. Bardot L, McClelland E (2000) The reliability of emplacement temperature estimates using palaeomagnetic methods: a case study from Santorini, Greece. Geophys J Int 143:39–51CrossRefGoogle Scholar
  5. Bardot L, Thomas R, McClelland E (1996) Emplacement temperatures of pyroclastic deposits on Santorini deduced from palaeomagnetic measurements: constraints on eruption mechanism In: Morris A, Tarling DH (eds) Paleomagnetism and tectonics of the Mediterranean region. Geol Soc Lond 105:345–358Google Scholar
  6. Cas RAF, Wright JV (1987) Volcanic successions. Modern and ancient. Chapman and Hall, London, pp 1–528Google Scholar
  7. Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperatures of the A.D. 79 pyroclastic density current deposits (Vesuvius, Italy). J Geophys Res 109:B02207CrossRefGoogle Scholar
  8. D’Amico C, Innocenti F, Sassi FP (1987) Magmatismo e metamorfismo. UTET, Torino, pp 1–535Google Scholar
  9. De Boer CB (1999) Rock-magnetic studies on hematite, maghemite and combustion-metamorphic rocks. PhD Thesis, 256 ppGoogle Scholar
  10. De’ Gennaro M, Incoronato A, Mastrolorenzo G, Adabbo M, Spina G (1999) Depositional mechanisms and alteration processes in different types of pyroclastic deposits from Campi Flegrei volcanic field (Southern Italy). J Volcanol Geotherm Res 91:303–320CrossRefGoogle Scholar
  11. De Rita D, Funiciello R, Pantosti D (1986) Dynamics and evolution of the Albano crater, south of Roma. In: IAVCEI Kagoshima International Conference on volcanoes, Kagoshima, pp 502–505Google Scholar
  12. De Rita D, Funiciello R, Parotto M (1988) Geological Map of the Alban Hills Volcanic Complex, CNRGoogle Scholar
  13. De Rita D, Giordano G, Rosa C, Sheridan MF (1995) Volcanic risk at the Alban Hills volcano and numerical simulations. In: Trigila R (ed) The Volcano of the Alban Hills. Tipografia SGS, Roma, pp 33–73Google Scholar
  14. Dekkers MJ (1990) Magnetic monitoring of pyrrhotite alteration during thermal demagnetization. Geophys Res Lett 17:779–782CrossRefGoogle Scholar
  15. Dellino P, Isaia R, La Volpe L, Orsi G (2004) Interaction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy). J Volcanol Geotherm Res 133:193–210CrossRefGoogle Scholar
  16. Dodson MH, McClelland-Brown E (1980) Magnetic blocking temperatures of single-domain grains during slow cooling. J Geophys Res 85:2625–2637CrossRefGoogle Scholar
  17. Druitt TH, Calder ES, Cole PD, Hoblitt RP, Loughlin SC, Norton GE, Ritchie LJ, Sparks RSJ, Voight B (2002) Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufrière Hills Volcano, Montserrat: an important volcanic hazard. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc, London, pp 263–279Google Scholar
  18. Dunlop DJ, Özdemir Ö (1997) Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, pp 1–573Google Scholar
  19. Folgheraiter G (1894) Orientazione ed intensità del magnetismo permanente nelle rocce vulcaniche del Lazio. Rend Accad Naz Lincei III:165–172Google Scholar
  20. Fornaseri M, Cortesi C (1989) Recenti acquisizioni sull’eta’ del ‘Peperino’ di Albano. Docum Albana 11:7–10Google Scholar
  21. Freda C, Gaeta M, Karner DB, Marra F, Renne PR, Taddeucci J, Scarlato P, Christensen JN, Dallai L (2006) Eruptive history and petrologic evolution of the Albano multiple maar (Alban Hills, Central Italy). Bull Volcanol 68:567–591CrossRefGoogle Scholar
  22. Funiciello R, Parotto M (1978) Il substrato sedimentario nell’area dei Colli Albani: considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell’Appennino centrale. Geol Romana 17:233–287Google Scholar
  23. Funiciello R, Giordano G, De Rita D (2003) The Albano maar lake (Colli Albani Volcano, Italy): Recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events. J Volcanol Geotherm Res 123:43–61CrossRefGoogle Scholar
  24. Giordano G, De Rita D, Cas R, Rodani S (2002) Valley pond and ignimbrite veneer deposits in the small-volume phreatomagmatic ‘Peperino Albano’ basic ignimbrite, Lago Albano maar, Colli Albani volcano, Italy: Influence of topography. J Volcanol Geotherm Res 118:131–144CrossRefGoogle Scholar
  25. Giordano G, De Benedetti AA, Diana A, Diano G, Gaudioso F, Marasco F, Miceli M, Mollo S, Cas RAF, Funiciello R (2006) The Colli Albani mafic caldera (Roma, Italy): Stratigraphy, structure and petrology. J Volcanol Geotherm Res 155:49–80CrossRefGoogle Scholar
  26. Grubensky MJ, Smith GA, Geissman JW (1998) Field and paleomagnetic characterization of lithic and scoriaceous breccias at Pleistocene Broken Top volcano, Oregon Cascades. J Volcanol Geotherm Res 83:93–114CrossRefGoogle Scholar
  27. Gurioli L, Pareschi MT, Zanella E, Lanza R, Deluca E, Bisson M (2005) Interaction of pyroclastic density currents with human settlements: Evidence from ancient Pompeii. Geology 33:441–444CrossRefGoogle Scholar
  28. Hoblitt RP, Kellogg KS (1979) Emplacement temperature of unsorted and unstratified deposits of volcanic rock debris as determined by paleomagnetic techniques. Geol Soc Am Bull 90:633–642CrossRefGoogle Scholar
  29. Jaeger JC (1964) Thermal effects of intrusions. Rev Geophys 2:443–466CrossRefGoogle Scholar
  30. Kent DV, Ninkovich D, Pescatore T, Sparks SRJ (1981) Palaeomagnetic determination of emplacement temperature of Vesuvius AD 79 pyroclastic deposits. Nature 290:393–396CrossRefGoogle Scholar
  31. Kent JT, Briden JC, Mardia KV (1983) Linear and planar structure in ordered multivariate data as applied to progressive demagnetization of palaeomagnetic remanence. Geophys J Roy Astr Soc 75:593–621Google Scholar
  32. Macdonald GA (1972) Volcanoes. Prentice Hall, Englewood Cliffs, NJ, pp 1–510Google Scholar
  33. Marra F, Freda C, Scarlato P, Taddeucci J, Karner DB, Renne PR, Gaeta M, Palladino DM, Trigila R, Cavarretta G (2003) Post-caldera activity in the Alban Hills volcanic district (Italy): 40Ar/39Ar geochronology and insights into magma evolution. Bull Volcanol 65:227–247CrossRefGoogle Scholar
  34. Manni R, Palombo MR, Palladino D (2004) The eurasian griffon, Gyps Fulvus (Hablizl, 1783) in the “Peperini” hydromagmatic deposits of the Alban Hills (Rome, Italy): a case of exceptional preservation. Geologica Romana 37:131–133Google Scholar
  35. Maury R (1971) Application de la spectomètrie infrarouge a l’étude des bois fossilisès dans les formations volcaniques. Bull Soc Géolog France 7:532–538Google Scholar
  36. McClelland-Brown E (1982) Discrimination of TRM and CRM by blocking-temperature spectrum analysis. Phys Earth Planet Inter 30:405–414CrossRefGoogle Scholar
  37. McClelland E, Druitt TH (1989) Paleomagnetic estimates of emplacement temperatures of pyroclastic deposits on Santorini, Greece. Bull Volcanol 51:16–27CrossRefGoogle Scholar
  38. McClelland E, Erwin PS (2003) Was a dacite dome implicated in the 9,500 B.P. collapse of Mt Ruapehu? A palaeomagnetic investigation. Bull Volcanol 65:294–305Google Scholar
  39. McClelland E, Wilson CJN, Bardot L (2004) Paleotemperature determinations for the 1.8 ka Taupo ignimbrite, New Zealand, and implications for the emplacement history of a high velocity pyroclastic flow. Bull Volcanol 66:492–513CrossRefGoogle Scholar
  40. Meli R (1892) Sui resti fossili di un avvoltoio del genere Gyps rinvenuti nel peperino laziale. Boll Soc Romana Studi zoologici 1:60–67Google Scholar
  41. Mercier N (1993) The thermo-luminesence dating technique: applications and possibilities. In: Symposium on Quaternary stratigraphy in volcanic area. INQUA, Roma, pp 52Google Scholar
  42. Néel L (1949) Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann Géophys 5:99–136Google Scholar
  43. Porreca M, Mattei M, Giordano G, De Rita D, Funiciello R (2003) Magnetic fabric and implications for pyroclastic flow and lahar emplacement, Albano maar, Italy. J Geophys Res 108:2264CrossRefGoogle Scholar
  44. Pullaiah GE, Irving E, Buchan KL, Dunlop DJ (1975) Magnetization changes caused by burial and uplift. Earth Planet Sci Lett 28:133–143CrossRefGoogle Scholar
  45. Sawada Y, Sampei Y, Hyodo M, Yagami T, Fukue M (2001) Estimation of emplacement temperature of pyroclastic flows using H/C ratios of carbonized wood. J Volcanol Geotherm Res 104:1–20CrossRefGoogle Scholar
  46. Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17:1–29CrossRefGoogle Scholar
  47. Soligo M, Tuccimei P, Giordano G, Funiciello R, De Rita D (2003) New U-series dating of a carbonate level underlying the last Albano “wet” pyroclastic flow (Alban Hills, Italy). Il Quaternario 16:115–120Google Scholar
  48. Torsvik TH, Briden JC, Smethurst MA (1999) IAPD—Interactive Analysis of Palaeomagnetic Data (User guide and program description). Internal Publication, Univ. of Bergen, Norway, pp 1–74Google Scholar
  49. Tsuboi S, Tsuya H (1930) On the temperature of the pumiceous ejecta of Komagatake, Hokkaidò, as inferred from their modes of oxidation. Bull Earthq Res Inst Univ Tokyo 8:271–273Google Scholar
  50. Walker GPL (1983) Ignimbrite types and ignimbrite problems. J Volcanol Geotherm Res 17:65–88CrossRefGoogle Scholar
  51. Wilson CJN, Walker GPL (1982) Ignimbrite depositional facies: the anatomy of a pyroclastic flow. J Geol Soc London 139:581–592CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. Porreca
    • 1
    Email author
  • M. Mattei
    • 1
  • C. MacNiocaill
    • 2
  • G. Giordano
    • 1
  • E. McClelland
    • 2
  • R. Funiciello
    • 1
  1. 1.Dipartimento Scienze GeologicheUniversità Roma TreRomaItaly
  2. 2.Department of Earth SciencesUniversity of OxfordOxfordUK

Personalised recommendations