Bulletin of Volcanology

, Volume 69, Issue 6, pp 581–608 | Cite as

Magma evolution of Quaternary minor volcanic centres in southern Peru, Central Andes

  • Adélie Delacour
  • Marie-Christine Gerbe
  • Jean-Claude Thouret
  • Gerhard Wörner
  • Perrine Paquereau-Lebti
Research Article


Minor centres in the Central Volcanic Zone (CVZ) of the Andes occur in different places and are essential indicators of magmatic processes leading to formation of composite volcano. The Andahua–Orcopampa and Huambo monogenetic fields are located in a unique tectonic setting, in and along the margins of a deep valley. This valley, oblique to the NW–SE-trend of the CVZ, is located between two composite volcanoes (Nevado Coropuna to the east and Nevado Sabancaya to the west). Structural analysis of these volcanic fields, based on SPOT satellite images, indicates four main groups of faults. These faults may have controlled magma ascent and the distribution of most centres in this deep valley shaped by en-echelon faulting. Morphometric criteria and 14C age dating attest to four main periods of activity: Late Pleistocene, Early to Middle Holocene, Late Holocene and Historic. The two most interesting features of the cones are the wide compositional range of their lavas (52.1 to 68.1 wt.% SiO2) and the unusual occurrence of mafic lavas (olivine-rich basaltic andesites and basaltic andesites). Occurrence of such minor volcanic centres and mafic magmas in the CVZ may provide clues about the magma source in southern Peru. Such information is otherwise difficult to obtain because lavas produced by composite volcanoes are affected by shallow processes that strongly mask source signatures. Major, trace, and rare earth elements, as well as Sr-, Nd-, Pb- and O-isotope data obtained on high-K calc-alkaline lavas of the Andahua–Orcopampa and Huambo volcanic province characterise their source and their evolution. These lavas display a range comparable to those of the CVZ composite volcanoes for radiogenic and stable isotopes (87Sr/86Sr: 0.70591–0.70694, 143Nd/144Nd: 0.512317–0.512509, 206Pb/204Pb: 18.30–18.63, 207Pb/204Pb: 15.57–15.60, 208Pb/204Pb: 38.49–38.64, and δ 18O: 7.1–10.0‰ SMOW), attesting to involvement of a crustal component. Sediment is absent from the Peru–Chile trench, and hence cannot be the source of such enrichment. Partial melts of the lowermost part of the thick Andean continental crust with a granulitic garnet-bearing residue added to mantle-derived arc magmas in a high-pressure MASH [melting, assimilation, storage and homogenisation] zone may play a major role in magma genesis. This may also explain the chemical characteristics of the Andahua–Orcopampa and Huambo magmas. Fractional crystallisation processes are the main governors of magma evolution for the Andahua–Orcopampa and Huambo volcanic province. An open-system evolution is, however, required to explain some O-isotopes and some major and trace elements values. Modelling of AFC processes suggests the Charcani gneisses and the local Andahua–Orcopampa and Huambo basement may be plausible contaminants.


Peruvian Andes Monogenetic cones Quaternary activity Magma source Deep crustal assimilation Fractional crystallization 



The authors are grateful to M. Veschambre for assistance on the electron microprobe, and C. Perrache and C. Bosq, G. Hartman and K. Simon for invaluable help in REE and radiogenic isotopes analyses. We also thank our Peruvian colleagues and PhD students of IGP (Instituto Geofisico del Peru, Lima) for their support in the field. We gratefully acknowledge the constructive comments of Richard Price, Suzanne Kay and the associate editor, James White, which greatly improved this manuscript. Funding and logistical support for this project were provided by IRD (Institut de Recherche pour le Développement, Lima, Peru), by LMV (Laboratoire Magmas et Volcans UMR 6524 CNRS, Clermont, France), by CRV (ex-Coordination de la Recherche Volcanologique, Clermont) and by IGP (Lima, Peru). Financial support to GW was provided by DFG project Wo362/18.


  1. Aitcheson SJ, Forrest AH (1994) Quantification of crustal contamination in open magmatic systems. J Petrol 35:461–488Google Scholar
  2. Aitcheson SJ, Harmon RS, Moorbath S, Schneider A, Soler P, Soria-Escalante E, Steele G, Swainbank I, Wörner G (1995) Pb isotopes define basement domains of the Altiplano, Central Andes. Geology 23:555–558CrossRefGoogle Scholar
  3. Allmendiger RW, Eremchuck JE, Sosa-Gomez J, Ojeda J, Francis PW (1989) The Pasto–Ventura pull-apart and southward collapse of the southern Puna plateau. J Latin Am Earth Sci 2:111–130CrossRefGoogle Scholar
  4. Antayhua Y, Tavera H, Bernal I (2001) Analisis de la actividad sismica en la region del volcán Sabancaya (Arequipa). Bol Soc Geol Perú 92:78–79Google Scholar
  5. Babeyko AY, Sobolev SV, Trumbull RB, Oncken O, Lavier LL (2002) Numerical models of crustal scale convection and partial melting beneath the Altiplano–Puna Plateau. Earth Planet Sci Lett 199:373–388CrossRefGoogle Scholar
  6. Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. Amer Mineral 73:57–61Google Scholar
  7. Barazangi W, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692CrossRefGoogle Scholar
  8. Barreiro BA, Clark AH (1984) Lead isotopic evidence for evolutionary changes in magma-crust interaction, Central Andes, southern Peru. Earth Planet Sci Lett 69:30–42CrossRefGoogle Scholar
  9. Baumont D, Paul A, Zandt G, Beck SL (2001) Inversion of Pn travel times for lateral variations of Moho geometry beneath the Central Andes and comparison with the receiver functions. Geophys Res Lett 28:1663–1666CrossRefGoogle Scholar
  10. Beck SL, Zandt G (2002) The nature of the orogenic crust in the Central Andes. J Geophys Res 107:1–16CrossRefGoogle Scholar
  11. Beck S, Zandt G, Myers SL, Wallace T, Silver P, Drake LP (1996) Crustal thickness variations in the Central Andes. Geology 24:407–410CrossRefGoogle Scholar
  12. Cahill TA, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529Google Scholar
  13. Caldas J (1993) Geologia de los cuadrangulos de Huambo y Orcopampa. Bull Inst Geol Minar Metal Lima 46:1–62Google Scholar
  14. Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite; application to geothermometry. Geochim Cosmochim Acta 53:2985–2995CrossRefGoogle Scholar
  15. Churikova T, Dorendorf F, Wörner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42:1567–1593CrossRefGoogle Scholar
  16. Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analyses. Geochim Cosmochim Acta 27:43–52CrossRefGoogle Scholar
  17. Colton HS (1967) The basaltic cinder cones and lava flows of the San Francisco Mountain volcanic field, Arizona. Museum of Northern Arizona Bulletin:10 (revised), Flagstaff, pp 1–50Google Scholar
  18. Coplen TK (1993) Normalization of oxygen and hydrogen isotope data. Chem Geol 72:293–297Google Scholar
  19. Davidson JP, Harmon RS (1989) Oxygen isotope constraints on the petrogenesis of volcanic arc magmas from Martinique, Lesser Antilles. Earth Planet Sci Lett 95:255–270CrossRefGoogle Scholar
  20. Davidson JP, de Silva SL (1995) Late Cenozoic magmatism of the Bolivian Altiplano. Contrib Mineral Petrol 119:387–408Google Scholar
  21. Davidson JP, Harmon RS, Wörner G (1991) The source of the Central Andean Magmas; Some considerations. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am, Special Paper 265:233–243Google Scholar
  22. Defant MJ (2002) Forum. EOS 83(23):256–257Google Scholar
  23. Defant MJ, Drummond MS (1990) Derivation of some modern island arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  24. De Paolo DJ (1981) Trace elements and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  25. Deruelle B (1982) Petrology of Plio-Quaternary volcanism of the south central and meridional Andes. J Volcanol Geotherm Res 14:77–124CrossRefGoogle Scholar
  26. De Silva SL, Xuming L (2000) Trace element character of minor centres from southern Peru: insight into source relationships beneath the Central Volcanic Zone of the Andes. In: Abstract of State of the Arc 2000 (IAVCEI) Processes and Time Scales in the Genesis and Evolution of Arc Magmas, Ruapehu New Zealand, pp 41–44Google Scholar
  27. Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76CrossRefGoogle Scholar
  28. Fisk MR, Bence AE (1980) Experimental crystallization of chrome spinel in FAMOUS basalt 527-1-1. Earth Planet Sci Lett 48:111–123CrossRefGoogle Scholar
  29. Fowler MB, Harmon RS (1990) The oxygen isotope composition of lower crustal granulite xenoliths. In: Vielzeuf D, Vidal Ph (eds) Granulites and crustal evolution. Kluwer, Dordrecht, pp 493–506Google Scholar
  30. Garrison JM, Davidson JP (2003) Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 6:565–568CrossRefGoogle Scholar
  31. Gerbault M, Martinod J, Hérail G (2005) Possible orogeny-parallel lower crustal flow and thickening in the Central Andes. Tectonophysics 399:59–72CrossRefGoogle Scholar
  32. Gerbe MC, Thouret JC (2004) Role of magma mixing in the petrogenesis of tephra erupted during the 1990–98 explosive activity of Nevado Sabancaya, southern Peru. Bull Volcanol 66:541–561CrossRefGoogle Scholar
  33. Giese P, Scheuber E, Schilling F, Schmitz M, Wigger P (1999) Crustal thickening processes in the Central Andes and the different natures of the MOHO discontinuity. In: Reutter KJ (ed) Central Andean deformation. J S Amer Earth Sci 12:201–220Google Scholar
  34. Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: A review. Geol Soc Amer Bull 112:1091–1105CrossRefGoogle Scholar
  35. Gregory R, Criss RE (1986) Isotopic exchange in open and closed systems. In: Valley JW, Taylor HP Jr, O Neil JR (ed) Stable isotopes in high temperature geological processes. Rev Miner 16:91–127Google Scholar
  36. Harmon RS, Hoefs J (1984) Oxygen isotope ratios in Late Cenozoic Andean Volcanics. In: Harmon RS, Barreiro BA (eds) Andean Magmatism: Chemical and isotopic constraints, Shiva, London, pp 9–20Google Scholar
  37. Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120:95–114Google Scholar
  38. Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Deruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc–alkaline lavas of the Andean Cordillera. J. Geol Soc 141:803–822Google Scholar
  39. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489CrossRefGoogle Scholar
  40. Huaman D, Chorowicz J, Deffontaines B, Guillande R, Rudaut JP (1993) Cadre structurale et risques géologiques étudiés à l’aide de l’imagerie spatiale : la région du Colca (Andes du Sud Pérou). Bull Soc Géol Fr 164:807–818Google Scholar
  41. Irvine TN (1967) Chromian spinel as a petrogenetic indicator Part 2, Petrologic applications. Can J Earth Sci 2:648–671Google Scholar
  42. Isacks BL (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231Google Scholar
  43. Ito E, Stern RJ (1986) Oxygen- and strontium-isotopic investigations of subduction zone volcanism; the case of the Volcano Arc and the Marianas island arc. Earth Planet Sci Lett 76:312–320CrossRefGoogle Scholar
  44. James DE (1971) Plate tectonics and structure of the Andean orogenic belt. EOS, Trans Amer Geophys Union 52(4):351Google Scholar
  45. James DE (1982) A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in Central Andes lavas, I Local geochemical variations. Earth Planet Sci Lett 57:47–62CrossRefGoogle Scholar
  46. Jurewicz AJG, Watson EB (1988) Cations in olivine, Part 1: Calcium partitioning and calcium–magnesium distribution between olivine and co-existing melts, with petrologic applications. Contrib Mineral Petrol 99:176–185CrossRefGoogle Scholar
  47. Kalamarides RI (1986) High temperature oxygen isotope fractionation among phases of the Kiglapait intrusion, Labrador, Canada. Chem Geol 58:303–310Google Scholar
  48. Kaneoka CJ, Guevara C (1984) K–Ar determinations of late tertiary and quaternary Andean volcanic rocks, in Southern Peru. Geochem J 18:233–239Google Scholar
  49. Kay SM (2002) Andean adakites from slab melting, crustal thickening, and fore-arc subduction erosion, 5th International Symposium of Andean Geodynamics, pp 405–408Google Scholar
  50. Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189CrossRefGoogle Scholar
  51. Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C (1987) Probing the evolving Andean lithosphere: Mid-late Tertiary magmatism in Chile (29°–30° 30′S) over the modern zone of subhorizontal subduction. J Geophys Res 92:6173–6189Google Scholar
  52. Kay SM, Coira B, Viramonte J (1994) Young mafic back-arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, Central Andes. J Geophys Res 99:24323–24336CrossRefGoogle Scholar
  53. Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonics, and mineral deposits of the central Andes (22 to 33°S). In: Skinner BJ (ed) Geology and Ore deposits of the Central Andes. Soc Economic Geol Spec Publ 7:27–59Google Scholar
  54. Kretz R (1981) Transfer exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochim Cosmochim Acta 46:411–421CrossRefGoogle Scholar
  55. Kyser TK, O’Neil JR, Carmichael SE (1981) Oxygen isotope thermometry of basic lavas and mantle nodules. Contrib Mineral Petrol 77:11–23CrossRefGoogle Scholar
  56. Lamb S (2000) Active deformation in the Bolivian Andes, South America. J Geophys Res 106:25627–25653CrossRefGoogle Scholar
  57. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals Names. Am Miner 82:1019–1037Google Scholar
  58. Leeman WP (1978) Distribution of Mg2+ between olivine and silicate melt, and its implications regarding melt structure. Geochim Cosmochim Acta 42:789–800CrossRefGoogle Scholar
  59. Le Maitre RW (ed) (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell, Oxford, pp 193Google Scholar
  60. Mamani M, Wörner G, Ruprecht P, Hartmann G, Simon K (2004) Sources of Central Andean Magmatism in time and space: implications from geochemical data from Quaternary to Miocene volcanism in S Peru and N Chile. International Association of Volcanology and Chemistry of the Earth’s Interior, Pucón Chile, pp 14–19 NovGoogle Scholar
  61. Mercier JL, Sebrier M, Lavenu A, Cabrera J, Bellier O, Dumont JF, Machare J (1992) Changes in the tectonic regime above a subduction zone of Andean type; the Andes of Peru and Bolivia during the Pliocene–Pleistocene. J Geophys Res 97:11945–11982Google Scholar
  62. Mering C, Huaman D, Chorowicz J, Deffontaines B, Guillande R (1996) New data on the geodynamics of Southern Peru from computerized analysis of SPOT and SAR ERS-1 images. Tectonophysics 259:153–169CrossRefGoogle Scholar
  63. Morimoto N (1988) Nomenclatures of pyroxenes. Can Mineral 27:143–156Google Scholar
  64. Norabuena E, Leffler-Grivin L, Mao A, Dixon T, Stein S, Selwyn-Sacks I, Ocola L, Ellis M (1998) Space geodetic observations of Nazca–South America convergence across the Central Andes. Science 279:358–362CrossRefGoogle Scholar
  65. Norabuena EO, Dixon TH, Stein S, Harrison CGA (1999) Decelerating Nazca–South America and Nazca–Pacific plate motions. Geophys Res Lett 26:3405–3408CrossRefGoogle Scholar
  66. Peccerillo A, Taylor SR (1976) Geochemistry of the Eocene calc–alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  67. Pin C, Santos Zalduegui JF (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89CrossRefGoogle Scholar
  68. Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium–neodynium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217CrossRefGoogle Scholar
  69. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289CrossRefGoogle Scholar
  70. Ruprecht P, Wörner G, Kronz A (2006) Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andagua monogenetic cones (S Peru) (submitted to Contrib Mineral Petrol)Google Scholar
  71. Sébrier M, Soler P (1991) Tectonics and magmatism in the Peruvian Andes from late Oligocene time to Present. Bull Geol Soc Amer Special Paper 265:259–277Google Scholar
  72. Shipboard Scientific Party (2002). Leg 202 Preliminary Report. ODP Prelim Report, 102 [Online]
  73. Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc–alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166CrossRefGoogle Scholar
  74. Somoza R (1998) Updated Nazca (Farallon)–South America relative motions during the last 40 My; implications for mountain building in the Central Andean region. J S Amer Sci 11:211–215Google Scholar
  75. Spencer KJ, Lindsley DH (1981) A solution model for co-existing iron–titanium oxides. Amer Mineral 11–12:1189–1201Google Scholar
  76. Stern RJ (2002) Subduction zones. Rev Geophys 40:31–38Google Scholar
  77. Sun SS, Mc Donough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc London Spec Publ 42:313–345Google Scholar
  78. Tassara A (2005) Interaction between the Nazca and South American plates and formation of the Altiplano–Puna plateau: review of a flexural analysis along the Andean margin (15°–34°S). Tectonophysics 399:39–57CrossRefGoogle Scholar
  79. Thornburg TM, Kulm LD (1987) Sedimentation in the Chile Trench; depositional morphologies, lithofacies, and stratigraphy. Geol Soc Amer Bull 98:33–52CrossRefGoogle Scholar
  80. Thorpe RS, Francis PW, O’Callaghan L (1984) Relatives roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Phil Trans R Soc Lond 310:675–692Google Scholar
  81. Thouret JC, Juvigné E, Gourgaud A, Boivin P, Dávila J (2002) Reconstruction of the AD 1600 Huaynaputina eruption based on the correlation of geologic evidence with early Spanish chronicles. J Volcanol Geotherm Res 115:529–570CrossRefGoogle Scholar
  82. Todt W, Cliff RA, Hanser A, Hoffman AW (1984) 202Pb–205Pb spike for Pb analysis. Terra Cognita 4:209Google Scholar
  83. Vatin-Pérignon N, Poupeau G, Oliver RA, Lavenu A, Labrin E, Keller F, Bellot-Gurlet L (1996) Trace and rare-earth element characteristics of acidic tuffs from southern Peru and northern Bolivia and a fission-track age for the sillar of Arequipa. J S Amer Earth Sci 9:91–109CrossRefGoogle Scholar
  84. Vennemann TW, Smith HS (1990) The rate and temperature of reaction of ClF3 with silicate minerals, and their relevance to oxygen isotope analysis. Chem Geol, Isot Geosci Sect 86:83–88CrossRefGoogle Scholar
  85. Venturelli G, Fragipane M, Weibel M, Antiga D (1978) Trace element distribution in the Cenozoic lavas of Nevado Coropuna and Andagua Valley, Central Andes of Southern Peru. Bull Volcanol 41:213–228CrossRefGoogle Scholar
  86. Vicente JC, Sequeiros F, Valdivia MA, Zavala J (1979) The Cincha–Lluta Overthrust; elements of a major Andean discontinuity in northwestern Arequipa. Bol Soc Geol Peru 61:67–99Google Scholar
  87. Victor P, Oncken O, Glodny J (2004) Uplift of the western Altiplano plateau: Evidence from the Precordillera between 20° and 21°S (northern Chile). Tectonics 23:1–24CrossRefGoogle Scholar
  88. Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–140CrossRefGoogle Scholar
  89. White WM (2005) Geochemistry. An online text book.
  90. Whitman D, Isacks BL, Chatelain JL, Chiu JM, Perez A (1992) Attenuation of high-frequency seismic waves beneath the central Andean plateau. J Geophys Res 97:19929–19947CrossRefGoogle Scholar
  91. Whitman D, Isacks LB, Kay SM (1996) Lithospheric structure and along-strike segmentation of the Central Andean Plateau; seismic Q, magmatism, flexure, topography and tectonics. In: Dewey JF and Lamb SH (ed) Geodynamic of the Andes. Tectonophysics 259:29–40Google Scholar
  92. Wilson M (1989) Igneous petrogenesis. Chapman & Hall, LondonGoogle Scholar
  93. Wood CA (1980) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8:137–160CrossRefGoogle Scholar
  94. Wood BJ, Banno S (1973) Garnet–orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124CrossRefGoogle Scholar
  95. Wörner G, Moorbath S, Harmon RS (1992) Andean Cenozoic volcanics reflect basement isotopic domains. Geology 20:1103–1106CrossRefGoogle Scholar
  96. Wörner G, Uhlig D, Kohler I, Seyfried MH (2002) Evolution of the West Andean Escarpment at 18°S (N Chile) during the last 25 Ma: uplift, erosion and collapse through time. Tectonophysics 345:183–198CrossRefGoogle Scholar
  97. Yuan X, Sobolev SV, Kind R (2002) Moho topography in the Central Andes and its geodynamic implications. Earth Planet Sci Lett 199:389–402CrossRefGoogle Scholar
  98. Zandt G, Velasco AA, Beck S (1994) Central Andean lithosphere structure from slant stacking for teleseismic depth-phase precursors. EOS, Trans Amer Geophys Union 75(44):69Google Scholar
  99. Zhao Z, Zheng Y (2003) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Adélie Delacour
    • 1
    • 4
  • Marie-Christine Gerbe
    • 1
  • Jean-Claude Thouret
    • 2
  • Gerhard Wörner
    • 3
  • Perrine Paquereau-Lebti
    • 2
  1. 1.Département de Géologie–Pétrologie–GéochimieUniversité Jean Monnet and UMR 6524 Magmas et VolcansSaint-Étienne CedexFrance
  2. 2.Laboratoire Magmas et VolcansUniversité Blaise Pascal, CNRS and OPGCClermont-Ferrand CedexFrance
  3. 3.Geowissenschaftliches Zentrum Göttingen, Abt. GeochemieUniversität GöttingenGöttingenGermany
  4. 4.Department of Earth Sciences, ETH ZurichZurichSwitzerland

Personalised recommendations