Bulletin of Volcanology

, Volume 66, Issue 6, pp 514–530 | Cite as

Volcanic hazard assessment at the restless Campi Flegrei caldera

  • Giovanni Orsi
  • Mauro Antonio Di Vito
  • Roberto Isaia
Research Article


Eruption forecasting and hazard assessments at the restless Campi Flegrei caldera, within the Neapolitan volcanic area, have been performed using stratigraphical, volcanological, structural and petrological data.

On the basis of the reconstructed variation of eruption magnitude through time, we hypothesize that the most probable maximum expected event is a medium-magnitude explosive eruption, fed by trachytic magma. Such an eruption could likely occur in the north-eastern sector of the caldera floor that is under a tensile stress regime, when the ongoing deformation will generate mechanical failure of the rocks. A vent could open also in the western sector, at the intersection of two fault systems contemporaneously activated, as happened in the last eruption at Monte Nuovo. The eruption could likely be preceded by precursors apparent to the population, such as ground deformation, seismicity and increase in gas emissions. It will probably alternate between magmatic and phreatomagmatic phases with the generation of tephra fallout, and dilute and turbulent pyroclastic currents. During and/or after the eruption, the re-mobilization of ash by likely heavy rains, could probably generate mud flows.

In order to perform a zoning of the territory in relation to the expected volcanic hazards, we have constructed a comprehensive hazard map. On this map are delimited (I) areas of variable probability of opening of a new vent, (II) areas which could be affected by variable load of fallout deposits, and (III) areas over which pyroclastic currents could flow. The areas in which a vent could likely open have been defined on the basis of the dynamics of the ongoing deformation of the caldera floor. To construct the fallout hazard map we have used the frequency of deposition of fallout beds thicker than 10 cm, the frequency of load on the ground by tephra fallout and the direction of dispersal axes of the deposits of the last 5 ka, and the limit load of collapse for the variable types of roof construction. The pyroclastic-current hazard map is based on the areal distribution and frequency of pyroclastic-current deposits of the last 5 ka.


  1. Agip (1987) Modello geotermico del sistema flegreo (Sintesi). Servizi Centrali per l’Esplorazione SERG-MESG, San Donato, 23 ppGoogle Scholar
  2. Alberico I, Lirer L, Petrosino P, Scandone R (2002) A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). J Volcanol Geotherm Res 116:63–78Google Scholar
  3. Allard P, Maiorani A, Tedesco D, Cortecci G, Turi B (1991) Isotopic study of the origin of sulphur and carbon in Solfatara fumaroles, Campi Flegrei Caldera. J Volcanol Geotherm Res 48:139–159Google Scholar
  4. Aloisi JC, Monaco A, Planchais N, Thommeret J, Thommeret Y (1978) The Holocene transgression in the Golfe du Lion, Southwestern France: paleogeographic and paleobotanical evolution. Geogr Phys Quat 32(2):145–162Google Scholar
  5. Barberi F, Innocenti F, Lirer L, Munno R, Pescatore T, Santacroce R (1978) The Campanian Ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy). Bull Volcanol 41(1):1–22Google Scholar
  6. Barberi F, Corrado G, Innocenti F, Luongo, G (1984) Phlegraean Fields 1982–1984: Brief chronicle of a volcano emergency in a densely populated area. Bull Volcanol 47(2):175–185Google Scholar
  7. Barberi F, Carapezza M, Innocenti F, Luongo G, Santacroce R (1989) The problem of volcanic unrest: the Phlegraean Fields case history. Atti Conv Lincei 80:387–405Google Scholar
  8. Berrino G, Corrado G, Luongo G, Toro B (1984) Ground deformation and gravity change accompanying the 1982 Pozzuoli uplift. Bull Volcanol 47(2):187–200Google Scholar
  9. Blong R (2003) Building damage in Rabaul, Papua New Guinea, 1994. Bull Volcanol 65:43–54Google Scholar
  10. Bonafede M, Mazzanti M (1998) Modelling gravity variations consistent with ground deformation in the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 81:137–157Google Scholar
  11. Casertano L, Oliveri A, Quagliarello MT (1976) Hydrodynamics and geodynamics in the Phlegraean Fields area of Italy. Nature 264:161–164Google Scholar
  12. Celico P, Dall’Aglio M, Ghiara MR, Stanzione D, Brondi M, Prosperi M (1992) Geochemical monitoring of the thermal fluids in the phlegraean fields from 1970 to 1990. Boll Soc Geol It 111:409–422Google Scholar
  13. Cinque A, Rolandi G, Zamparelli V (1985) L’estensione dei depositi marini Olocenici nei Campi Flegrei in relazione alla vulcano-tettonica. Boll Soc Geol It 104:327–348Google Scholar
  14. Chiodini G, Marini L (1998) Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochim Cosmochim Acta 62(15):2673–2687CrossRefGoogle Scholar
  15. Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003) Assessing pyroclastic fall hazard through field data and numerical simulations: Example from Vesuvius. J Geophys Research 108, 82, 2063 DOI 10.1029/2001JB000642Google Scholar
  16. Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—The Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219Google Scholar
  17. Corrado G, Guerra I, Lo Bascio A, Luongo G, Rampoldi F (1977) Inflation and microearthquake activity of Phlegraean Fields, Italy. Bull Volcanol 40(3):169–188Google Scholar
  18. Corrado G, De Lorenzo S, Mongelli F, Tramacere A, Zito G (1998) Surface heat flow density at Phlegraean Fields caldera (Southern Italy). Geothermics 27:469–484CrossRefGoogle Scholar
  19. D’Antonio M, Civetta L, Orsi G, Pappalardo L, Piochi M, Carandente A, de Vita S, Di Vito MA, Isaia R, Southon J (1999) The present state of the magmatic system of the Campi Flegrei caldera based on the reconstruction of its behaviour in the past 12 ka. J Volcanol Geotherm Res 91:247–268Google Scholar
  20. Deino AL, Orsi G, Piochi M, de Vita S (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera – Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res (in press)Google Scholar
  21. Dellino P, La Volpe L (2000) Structures and grain size distribution in surge deposits as a tool for modelling the dynamics of dilute pyroclastic density currents at La Fossa di Vulcano (Aeolian Islands, Italy). J Volcanol Geoth Res 96:57–78CrossRefGoogle Scholar
  22. Dellino P, Isaia R, La Volpe L, Orsi G (2001) Statistical analysis of textural data from complex pyroclastic sequence: implication for fragmentation processes of the Agnano-Monte Spina eruption (4.1 ka), Phlegraean Fields, southern Italy. Bull Volcanol 63:443–461CrossRefGoogle Scholar
  23. Dellino P, Isaia R, La Volpe L, Orsi G (2004a) Interference of particles fallout on the emplacement of pyroclastic surge deposits of the Agnano-Monte Spina eruption (Phlegraean Fields, Southern Italy). J Volcanol Geotherm Res (in press)Google Scholar
  24. Dellino P, Isaia R, Veneruso M (2004b) Turbulent boundary layer shear flow as an approximation of pyroclastic surge: implication for hazard assessment at Phlegraean Fields. J Volcanol Geotherm Res (in press)Google Scholar
  25. De Natale G, Pingue F (1993) Ground deformation in collapsed caldera structures. J Volcanol Geotherm Res 57:19–38Google Scholar
  26. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin AE (2001) New constraints on the pyroclastic eruption history of the Campanian volcanic plain (Italy). Mineral Petrol 73:47–65CrossRefGoogle Scholar
  27. de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Di Cesare T, Di Vito M, Fisher RV, Isaia R, Marotta E, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano-Monte Spina eruption (4.1 ka) in the resurgent, nested Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301Google Scholar
  28. Di Maio R, Patella D, Petrillo Z, Siniscalchi A, Cecere G, De Martino P (2000) Application of electric and electromagnetic methods to the definition of the Campi Flegrei caldera (Italy). Annali di Geofisica 43:315–390Google Scholar
  29. Di Vito MA, Lirer L, Mastrolorenzo G, Rolandi G (1987) The Monte Nuovo eruption (Campi Flegrei, Italy). Bull Volcanol 49:608–615Google Scholar
  30. Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka. J Volcanol Geotherm Res 91:221–246Google Scholar
  31. Dvorak JJ, Gasparini P (1991) History of earthquakes and vertical movement in Campi Flegrei caldera, Southern Italy: comparison of precursory events to the a.d. 1538 eruption of Monte Nuovo and activity since 1968. J Volcanol Geotherm Res 48:77–92Google Scholar
  32. Fedele F, Giaccio B, Isaia R, Orsi G (2002) Ecosystem impact of the Campanian Ignimbrite eruption in Late Pleistocene Europe. Quaternary Research 57:420–424CrossRefGoogle Scholar
  33. Fedele F, Giaccio B, Isaia R, Orsi G (2003). The Campanian Ignimbrite eruption, Heinrich Event 4, and Palaeolithic change in Europe: a high-resolution investigation. In: Volcanism and Earth’s Atmosphere. AGU Geophys Monograph 139:301–325Google Scholar
  34. Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of large-volume pyroclastic flow—emplacement of the Campanian Ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220Google Scholar
  35. Isaia R, D’Antonio M, Dell’Erba F, Di Vito M, Orsi G (2004) The Astroni volcano: the only example of close eruptions within the same vent area in the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res (in press)Google Scholar
  36. Iuliano T, Mauriello P, Patella D (2000) A probability tomographic approach to the analysis of potential field surveys in the Campi Flegrei caldera (Italy). Annali di Geofisica 44:403–420Google Scholar
  37. Lirer L, Mastrolorenzo G, Rolandi G (1987) Un evento pliniano nell’attività recente dei Campi Flegrei. Boll Soc Geol It 106:461–473Google Scholar
  38. Lirer L, Petrosino P, Alberico I (2001) Volcanic hazard assessment at volcanic fields: the Campi Flegrei case history. J Volcanol Geotherm Res 112:55–75CrossRefGoogle Scholar
  39. Lundgren P, Usai S, Sansosti E, Lanari R, Tesauro M, Eonaro G, Berardino P (2001) Modeling surface deformation observed with synthetic aperture interferometry at Campi Flegrei caldera. J Geophys Research 106:19,355–19,366Google Scholar
  40. Malin MC, Sheridan M (1982) Computer assisted mapping of pyroclastic surges. Science 217:637–640Google Scholar
  41. Marianelli P, Proto M, Sbrana A (2003) Water content variability in Ignimbrite Campana melts. New insights on magma chamber history. GNV Gen Ass, Rome, June 9–11, Abstracts, 208 ppGoogle Scholar
  42. Orsi G, Gallo G, Zanchi A (1991) Simple shearing block resurgence in caldera depressions. A model from Pantelleria and Ischia. J Volcanol Geotherm Res 47:1–11Google Scholar
  43. Orsi G, D’Antonio M, de Vita S, Gallo G (1992) The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53:275–287Google Scholar
  44. Orsi G, Civetta L, D’Antonio M, Di Girolamo P, Piochi M (1995) Step-filling and development of a three-layers magma chamber: the Neapolitan Yellow Tuff case history. J Volcanol Geotherm Res 67:291–312Google Scholar
  45. Orsi G, de Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214Google Scholar
  46. Orsi G, Civetta L, Del Gaudio C, de Vita S, Di Vito MA, Isaia R, Petrazzuoli S, Ricciardi G, Ricco C (1999a) Short-Term Ground Deformations and Seismicity in the Nested Campi Flegrei Caldera (Italy): an example of active block resurgence in a densely populated area. J Volcanol Geotherm Res 91:415–451Google Scholar
  47. Orsi G, Petrazzuoli S, Wohletz K (1999b) The interplay of mechanical and thermo-fluid dynamical systems during an unrest episode in calderas: the Campi Flegrei caldera (Italy) case. J Volcanol Geotherm Res 91:453–470Google Scholar
  48. Orsi G, de Vita S, Di Vito M, Nave R, Heiken G (2003) Facing volcanic and related hazards in the Neapolitan area. In: Heiken G, Fakundiny R, Sutter J (eds) Earth Sciences in the Cities: a reader. AGU, Sp Publ Series, Vol. 56, Washington, DC, pp 121–170Google Scholar
  49. Pappalardo L, Civetta L, D’Antonio M, Deino A, Di Vito MA, Orsi G, Carandente A, de Vita S, Isaia R, Piochi M (1999) Chemical and isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite (37 ka) and the Neapolitan Yellow Tuff (12 ka) eruptions. J Volcanol Geotherm Res 91:141–166Google Scholar
  50. Pappalardo L, Civetta L, De Vita S, Di Vito MA, Orsi G, Carandente A, Fisher RV (2002a) Timing of magma extraction during the Campanian Ignimbrite eruption (Campi Flegrei caldera). J Volcanol Geotherm Res 114:479–497Google Scholar
  51. Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R (2002b) Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J Petrol 43(8):1415–1434CrossRefGoogle Scholar
  52. Parascandola A (1947) I fenomeni bradisismici del Serapeo di Pozzuoli. Genovesi NapoliGoogle Scholar
  53. Pareschi MT, Cavarra L, Favalli M, Giannini F, Meriggi A (2000) Gis and volcanic risk management. Nat Hazards 21:361–379CrossRefGoogle Scholar
  54. Pomonis A, Spence R, Baxter P (1999) Risk assessment of residential buildings for an eruption of Furnas Volcano, Sao Miguel, The Azores. J Volcanol Geotherm Res 92:107–131Google Scholar
  55. Rosi M, Vezzoli L, Aleotti P, De Cenzi M (1996) Interaction between caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Phlegraean Fields, Italy. Bull Volcanol 57:541–554CrossRefGoogle Scholar
  56. Rosi M, Vezzoli L, Castelmenzano A, Grieco G (1999) Plinian pumice fall deposit of the Campanian Ignimbrite eruption (Phlegraean Fields, Italy). J Volcanol Geotherm Res 91:179–198CrossRefGoogle Scholar
  57. Scarpati C, Cole P, Perrotta A (1993) The Neapolitan Yellow Tuff—A large volume mutiphase eruption from Campi Flegrei, Southern Italy. Bull Volcanol 55:343–356Google Scholar
  58. Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15CrossRefGoogle Scholar
  59. Spence RJS, Pomonis A, Baxter PJ, Coburn AW, White M, Dayrit M, Field Epidemiology Training Program Team (1996) Building damage caused by the Mount Pinatubo eruption of June 15, 1991. In: Newall CG, Punongbayan RS (eds) Fire and Mud: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology, University of Washington Press, Seattle, pp 1055–1061Google Scholar
  60. Walker GPL (1984) Characteristics of dune-bedded pyroclastic surge bedsets. J Volcanol Geotherm Res 87:117–140Google Scholar
  61. Wohletz K, Orsi G, de Vita S (1995) Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical and granulometric data. J Volcanol Geotherm Res 67:263–290Google Scholar
  62. Wohletz K, Civetta L, Orsi G (1999) Thermal evolution of the Phlegraean magmatic system. J Volcanol Geotherm Res 91:381–414CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Giovanni Orsi
    • 1
  • Mauro Antonio Di Vito
    • 1
  • Roberto Isaia
    • 1
  1. 1.Osservatorio VesuvianoNapoliItaly

Personalised recommendations