Skip to main content
Log in

Geochemical evidence for mixing of magmatic fluids with seawater, Nisyros hydrothermal system, Greece

  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The chemical and isotopic compositions (δDH2O, δ18OH2O, δ18OCO2, δ13CCO2, δ34S, and He/N2 and He/Ar ratios) of fumarolic gases from Nisyros, Greece, indicate that both arc-type magmatic water and local seawater feed the hydrothermal system. Isotopic composition of the deep fluid is estimated to be +4.9±0.5‰ for δ18O and −11±5‰ for δD corresponding to a magmatic water fraction of 0.7. Interpretation of the stable water isotopes was based on liquid–vapor separation conditions obtained through gas geothermometry. The H2–Ar, H2–N2, and H2–H2O geothermometers suggest reservoir temperatures of 345±15 °C, in agreement with temperatures measured in deep geothermal wells, whereas a vapor/liquid separation temperature of 260±30 °C is indicated by gas equilibria in the H2O–H2–CO2–CO–CH4 system. The largest magmatic inputs seem to occur below the Stephanos–Polybotes Micros crater, whereas the marginal fumarolic areas of Phlegeton–Polybotes Megalos craters receive a smaller contribution of magmatic gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Barberi F, Navarro JM, Rosi M, Santacroce R, Sbrana A (1988) Explosive interaction of magma with groundwater: insights from xenoliths and geothermal drillings. Rend Soc Ital Mineral Petrogr Memorial Vol Marcello Carapezza 43:901–926

    Google Scholar 

  • Bolognesi L, D'Amore F (1993) Isotopic variation of the hydrothermal system on Vulcano Island, Italy. Geochim Cosmochim Acta 57:2069–2082

    CAS  Google Scholar 

  • Brombach T, Marini L, Hunziker JC (2000) Geochemistry of the thermal springs and fumaroles of Basse-Terre Island, Guadeloupe, Lesser Antilles. Bull Volcanol 61:477–490

    Article  Google Scholar 

  • Brombach T, Cardellini C, Chiodini G, Hunziker JC, Marini L (2001) Soil diffuse degassing and thermal energy fluxes from the southern Lakki plain, Nisyros (Greece). Geophys Res Lett 28:69–72

    CAS  Google Scholar 

  • Capasso G, Favara R, Inguaggiato S (1997) Chemical features and isotopic gaseous manifestation on Vulcano Island (Aeolian Islands): an interpretative model of fluid circulation. Geochim Cosmochim Acta 61:3425–3442

    CAS  Google Scholar 

  • Chiodini G, Cioni R (1989) Gas geobarometry for hydrothermal systems and its application to some Italian geothermal areas. Appl Geochem 4:465–472

    CAS  Google Scholar 

  • Chiodini G, Marini L (1998) Hydrothermal gas equilibria: I. the H2O–H2–CO2–CO–CH4 system. Geochim Cosmochim Acta 62:2673–2687

    Article  CAS  Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Marini L, Raco B, Taddeucci G (1992) Gas geobarometry in boiling hydrothermal systems: a possible tool to evaluate the hazard of hydrothermal explosions. Acta Vulcan, Marinelli Vol 2:99–107

    Google Scholar 

  • Chiodini G, Cioni R, Leonis C, Marini L, Raco B (1993a) Fluid geochemistry of Nisyros island, Dodecanese, Greece. J Volcanol Geotherm Res 56:95–112

    CAS  Google Scholar 

  • Chiodini G, Cioni R, Marini L (1993b) Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Appl Geochem 8:357–371

    CAS  Google Scholar 

  • Chiodini G, Cioni R, Marini L and Panichi C (1995) Origin of the fumarolic fluids of Vulcano Island, Italy, and implications for volcanic surveillance. Bull Volcanol 57:99–110

    Article  Google Scholar 

  • Chiodini G, Allard P, Caliro S, Parello F (2000) 18O exchange between steam and carbon dioxide in volcanic and hydrothermal gases: isotopic and genetic implications. Geochim Cosmochim Acta 64:2479–2488

    Article  CAS  Google Scholar 

  • Chiodini G, Brombach T, Caliro S, Cardellini C, Marini L, Dietrich V (2002) Geochemical indicators of possible ongoing volcanic unrest at Nisyros Island (Greece) Geophys Res Lett 29(16)

  • Cioni R, Corazza E (1981) Medium temperature fumarolic gas sampling. Bull Volcanol 44:23–29

    CAS  Google Scholar 

  • Cioni R, Corazza E, Fratta M, Pescia A (1980) Sampling and analysis of medium–high temperature fumarolic gases. Bull PIRPSEV 31:14–22

    Google Scholar 

  • Craig H (1963) The isotopic geochemistry of water and carbon in geothermal areas. In: Tongiorgi E (ed) Nuclear geology in geothermal areas. Spoleto 9–13 September, CNR, Pisa, pp 17–53

  • Dietrich VJ, Gartzos E, Leonis C, Lyberopoulou T, Schwander, FM, Moor C, Kipfer R, Bernasconi-Green G (1999) Origin of deep crustal waters in the Hellenic volcanic arc (Greece). Eur Union Geosci {Abstr}10:368

    Google Scholar 

  • Di Paola GM (1974) Volcanology and petrology of Nisyros Island (Dodecanese, Greece). Bull Volcanol 38:944–987

    Google Scholar 

  • Dotsika E (1992) Utilisation du geothermometre isotopique sulfate-eau en milieu de haute temperature sous influence marine potentielle: les systemes geothermaux de Grece. These en Sciences, Université Paris Sud, no 1781

    Google Scholar 

  • Ellis AJ, Mahon WAJ (1964) Natural hydrothermal systems and experimental hot water/rock interactions. Geochim Cosmochim Acta 28:1323–1357

    CAS  Google Scholar 

  • Fiebig J, Caliro S, Hunziker JC (2002) Abiogenic methane formation on Nisyros, Greece, and its role in monitoring volcanic activity. IAVCEI meeting 1902–2002 Montagne Pelee, Martinique, Explosive volcanism in subduction zone

  • Fournier RO, Potter RW (1982) A revised and expanded silica (quartz) geothermometer. Geotherm Resource Council Bull 11:3–12

    Google Scholar 

  • Gehre M, Hoefling R, Strauch G (1996) Sample preparation device for quantitative hydrogen isotope analysis using chromium metal. Anal Chem 68:4414–4417

    Article  CAS  Google Scholar 

  • Geotermica Italiana (1983) Nisyros 1 geothermal well. PPC-EEC report

  • Geotermica Italiana (1984) Nisyros 2 geothermal well. PPC-EEC report

  • Giggenbach WF (1975) A simple method for the collection and analysis of volcanic gas samples. Bull Volcanol 39:132–145

    Google Scholar 

  • Giggenbach WF (1980) Geothermal gas equilibria. Geochim Cosmochim Acta 44:2021–2032

    CAS  Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    CAS  Google Scholar 

  • Giggenbach WF (1991) Chemical techniques in geothermal exploration. In: D'Amore F (ed) Application of geochemistry in geothermal reservoir development. UNITAR, New York, pp 119–144

  • Giggenbach WF (1992a) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510

    CAS  Google Scholar 

  • Giggenbach WF (1992b) The composition of gases in geothermal and volcanic systems as a function of tectonic setting. In: Proceedings of the Seventh International Symposium on Water–Rock Interaction, Park City, Utah, pp 873–878

  • Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin Heidelberg New York, pp 221–256

  • Giggenbach WF (1997) The origin and evolution of fluids in magmatic-hydrothermal systems. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 737–796

  • Giggenbach WF, Goguel RL (1989) Collection and analysis of geothermal volcanic water and gas discharges. Chemistry Division, DSIR, New Zealand Report no CD 2401

  • Giggenbach WF, Poreda RJ (1993) Helium isotopic and chemical composition of gases from volcanic-hydrothermal systems in the Philippines. Geothermics 22:369–380

    Article  CAS  Google Scholar 

  • Giggenbach WF, Stewart MK (1982) Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas. Geothermics 11:71–80

    Article  CAS  Google Scholar 

  • Goff F, McMurtry GM (2000) Tritium and stable isotopes of magmatic waters. J Volcanol Geotherm Res 97:347–396

    Article  CAS  Google Scholar 

  • Hardiman JC (1999) Deep sea tephra from Nisyros Island, eastern Aegean Sea, Greece. In: Firth CR, McGuire WJ (eds) Volcanoes in the Quaternary. Geol Soc Lond Spec Publ 161:69–88

    CAS  Google Scholar 

  • Holland HD, Malinin SD (1997) The solubility and occurrence of non-ore minerals. In: HL Barnes (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 461–508

  • Horita J, Wesolowski DJ (1994) Liquid–vapor fractionation of oxygen and hydrogen isotopes of water from freezing to the critical temperature. Geochim Cosmochim Acta 58:3425–3437

    CAS  Google Scholar 

  • Kavouridis T, Kuris D, Leonis C, Liberopoulou V, Leontiadis J, Panichi C, La Ruffa G, Caprai A (1999) Isotope and chemical studies for a geothermal assessment of the island of Nisyros (Greece) Geothermics 28:219–239

    Google Scholar 

  • Keenan JH, Keyes FG, Hill PG, Moore JG (1969) Steam tables. Thermodynamic properties of water including vapor, liquid and solid phases. International edition-metric units. Wiley, New York

  • Keller J (1982) Mediterranean island arcs. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 307–325

  • Keller J, Gillot PY, Rehren TH, Stadlbauer E (1989) Chronostratigraphic data for the volcanism in the eastern Hellenic arc, Nisyros and Kos. Terra Abstr 0S06-26:354

  • La Ruffa G, Panichi C, Kavouridis T, Liberopoulou V, Leontiadis J, Caprai A (1999) Isotope and chemical assessment of geothermal potential of Kos Island, Greece. Geothermics 28:205–217

    Article  Google Scholar 

  • Le Pichon X, Angelier J (1979) The Hellenic Arc Trench System: a key to the neotectonic evolution of the Eastern Mediterranean area. Tectonophysics 60:1-42

    Google Scholar 

  • Marini L, Principe C, Chiodini G, Cioni R, Frytikas M, Marinelli G (1993) Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard. J Volcanol Geotherm Res 56:71–95

    CAS  Google Scholar 

  • Marini L, Gambardella B, Principe C, Arias A, Brombach T, Hunziker JC (2002) Characterization of magmatic sulfur in the Aegean island arc by means of the d34S values of fumarolic H2S, elemental S, and hydrothermal gypsum from Nisyros and Milos islands. Earth Planet Sci Lett 200:15–31

    Article  CAS  Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayton RN (1979) Oxygen isotopic fractionation in the system quartz–albite–anorthite–water. Geochim Cosmochim Acta 42:1131–1140

    Google Scholar 

  • Naumov GB, Ryzhenko BN, Khodakovsky IL (1974) Handbook of thermodynamic data. Report No. USGS-WRD-74-001. US Geological Survey. Water Resources Division, Menlo Park, California

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 517–612

  • O'Neil JR, Taylor HP Jr (1967) The oxygen isotope and cation exchange chemistry of feldspars. J Geophys Res 74:6012–6022

    Google Scholar 

  • Panichi C, Noto P (1992) Isotopic and chemical composition of water, steam and gas samples of the natural manifestations of the Island of Vulcano (Aeolian Arc, Italy). Acta Vulcanol 2:297–312

    Google Scholar 

  • Panichi C, Ferrara GC, Gonfiantini R (1976) Isotope geothermometry in the Larderello geothermal field. Geothermics 5:81–88

    Article  Google Scholar 

  • Paonita A, Favara R, Nuccio PM, Sortino F (2002) Genesis of fumarolic emissions as inferred by isotopic mass balances: CO2 and water at Vulcano Island, Italy. Geochim Cosmochim Acta 66:759–772

    Article  CAS  Google Scholar 

  • Papadopoulos GA, Sachpazi M, Panopoulou G, Stavrakakis, G (1998) The volcanoseismic crisis of the 1996–97 in Nisyros, SE Aegean Sea, Greece. Terra Nova 10:151–154

    Article  Google Scholar 

  • Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119:265–274

    Article  CAS  Google Scholar 

  • Signorelli S, Carroll MR (2000) Solubility and fluid melt partitioning of Cl in hydrous phonolitic melts. Geochim Cosmochim Acta 64:2851–2862

    CAS  Google Scholar 

  • Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic-gas studies: methods, results, and applications. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Rev Mineral 30:1–60

    CAS  Google Scholar 

  • van Soest MC, Hilton DR, Kreulen R (1998) Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochim Cosmochim Acta 62:3323–3335

    Article  Google Scholar 

  • Vougioukalakis G (1984) Studio vulcanologico e chimico-petrografico dell'isola di Nisyros (Dodecanneso, Grecia). Thesis in Geology, University of Pisa

  • Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77:219–262

    CAS  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to Luigi Marini (DIPTERIS, University of Genova, Italy), without whom this paper would have never been written. He was among the authors, but he wanted to be omitted because of contrasting views with the Executive Editor and the Associate Editor. We thank Roberto Cioni of the Institute of Geochronology and Isotope Geochemistry of CNR, Pisa (Italy) for providing equipments and laboratory assistance. The authors wish to thank Hiroshi Shinohara, Bruce W. Christenson, Fraser Goff, and John Stix for their thorough reviews of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Brombach.

Additional information

Editorial responsibility: H. Shinohara

Appendix

Appendix

The H2–Ar and H2–N2 geothermometers

A H2–Ar geothermometer, based on the strong dependence of f H2 on temperature, was derived by Giggenbach (1991), assuming that the Ar content of hydrothermal fluids is equal to that of air-saturated groundwater. The function given by Giggenbach (1991) is,

$$\log \left( {{\rm X}_{H_2 } /{\rm X}_{Ar} } \right)_L = - 2.5 + 0.014\left( {T - 273.15} \right),$$
(A.1)

where T is temperature in K and \( \left( {X_{H_2 } /X_{Ar} } \right)_L \) refers to the H2/Ar ratio in the equilibrium liquid phase. The corresponding function for the equilibrium vapor phase is obtained by the following simple relation:

$$ \log \left( {X_{H_2 } /X_{Ar} } \right)_V = \log \left( {X_{H_2 } /X_{Ar} } \right)_L - \log B_{Ar} + \log B_{H_2 } $$ % MathType!MTEF!2!1!+- % feaafaart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaeWaaeaacaWGybWaaSbaaSqaaiaadIeadaWgaaadbaGa % aGOmaaqabaaaleqaaOGaai4laiaadIfadaWgaaWcbaGaamyqaiaadk % haaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaaiaadAfaaeqaaOGaeyyp % a0JaciiBaiaac+gacaGGNbWaaeWaaeaacaWGybWaaSbaaSqaaiaadI % eadaWgaaadbaGaaGOmaaqabaaaleqaaOGaai4laiaadIfadaWgaaWc % baGaamyqaiaadkhaaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaaiaadY % eaaeqaaOGaeyOeI0IaciiBaiaac+gacaGGNbGaamOqamaaBaaaleaa % caWGbbGaamOCaaqabaGccqGHRaWkciGGSbGaai4BaiaacEgacaWGcb % WaaSbaaSqaaiaadIeadaWgaaadbaGaaGOmaaqabaaaleqaaaaa!5B46! $$ \log \left( {X_{H_2 } /X_{Ar} } \right)_V = \log \left( {X_{H_2 } /X_{Ar} } \right)_L - \log B_{Ar} + \log B_{H_2 } $$
(A.2)

where B i is the temperature dependence of the vapor/liquid distribution coefficient for H2 (Giggenbach 1980) and Ar. Based on the data of Naumov et al. (1974), the temperature dependence of B Ar for pure water is approximated by the following linear relationship:

$$\log B_{Ar} = 6.4787 - 0.01599\left( {T - 273.15} \right).$$
(A.3)

Use of Eq. (A.2) leads to,

$$ \log \left( {{\rm X}_{H_2 } /{\rm X}_{Ar} } \right)_V = - 2.75 + 0.016\left( {T - 273.15} \right). $$
(A.4)

Equations (A.1) and (A.4) assume that the Fe(II)–Fe(III) rock buffer of Giggenbach (1987) fixes the redox conditions in the hydrothermal system, i.e.:

$$R_H = \log \left( {f_{H_2 } /f_{H_2 O} } \right) \cong \log \left( {{\rm X}_{H_2 } /{\rm X}_{H_2 O} } \right) = - 2.82 \pm 0.02$$
(A.5)

at any temperature of interest.

Assuming that the N2 contents of Nisyros hydrothermal fluids are also equal to that of air-saturated groundwater, as expected on the basis of Ar–N2–He relationships, the following functions were derived for the equilibrium liquid,

$$\log \left( {{\rm X}_{H_2 } /{\rm X}_{N_2 } } \right)_L = - 4.08 + 0.014\left( {T - 273.15} \right)$$
(A.6)

and the equilibrium vapor,

$$ \log \left( {{\rm X}_{H_2 } /{\rm X}_{N_2 } } \right)_V = - 4.30 + 0.014\left( {T - 273.15} \right). $$
(A.7)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brombach, T., Caliro, S., Chiodini, G. et al. Geochemical evidence for mixing of magmatic fluids with seawater, Nisyros hydrothermal system, Greece. Bull Volcanol 65, 505–516 (2003). https://doi.org/10.1007/s00445-003-0278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-003-0278-x

Keywords

Navigation