Skip to main content
Log in

Environmental filtering mediates desert ant community assembly at two spatial scales

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding the mechanisms that maintain species coexistence and determine patterns of community assembly are fundamental goals of ecology. Quantifying the relationship between species traits and stress gradients is a necessary step to disentangle assembly processes and to be able to predict the outcome of environmental change. We examined the hypothesis that desert ant communities are assembled by niche-based processes i.e., environmental filtering and limiting similarity. First, we used population-level morphological trait measurements to study the functional structure of ant communities along a dryland environmental stress gradient. Second, we developed species distribution models for each species to quantify large-scale climatic niche overlap between species. Body, femur, antennal scape, and head lengths were correlated with environmental gradients. Regionally, the ant community was significantly and functionally overdispersed in terms of morphological traits which suggests the importance of competition to ant community structure. Ant community assembly was also strongly influenced by environmental factors as the degree of functional trait divergence, but not phylogenetic divergence, decreased with increasing environmental stress. Thus, environmental stress likely mediates limiting similarity in these desert ecosystems. Species with lower climatic niche overlap were more dissimilar in morphological traits. This suggests that environmental filtering on ant functional traits is important at the scale of species distributions in addition to regional scales. This study shows that environmental and biotic filtering (i.e., niche-based assembly mechanisms) are jointly and non-independently structuring the ant community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and reproducible documents have been published to Zenodo with DOI: https://doi.org/10.5281/zenodo.7644251. Each specimen record in BOLD is accompanied by photographs of the voucher specimen and collection date, locality, geographic coordinates, voucher depository, and barcode sequence. All records are publicly available through the BOLD system (https://www.boldsystems.org) in the “DS-ANTSSJD” dataset.

Code availability

Statistical analyses are available here: https://jennabraun.github.io/ant_habitat_coexistence/.

References

  • Abrams P (1983) The theory of limiting similarity. Annu Rev Ecol Syst 14:359–376

    Article  Google Scholar 

  • Adams DC (2014) A Generalized K Statistic for Estimating Phylogenetic Signal from Shape and Other High-Dimensional Multivariate Data. Syst Biol 63:685–697

    Article  PubMed  Google Scholar 

  • Andersen AN (2008) Not enough niches: non-equilibrial processes promoting species coexistence in diverse ant communities. Austral Ecol 33:211–220

    Article  Google Scholar 

  • Arroues KD (2006) Soil survey of Fresno County, California, western part. United States Department of Agriculture Natural Resources Conservation Service

    Google Scholar 

  • Bartolome JW, Frost WE, McDougald NK, Connor M (2002) California guidelines for residual dry matter (RDM) management on coastal and foothill annual rangelands. Agricult Nat Resourc Publ 8092:1–7

    Google Scholar 

  • Baselga A (2013) Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol Evol 4:552–557

    Article  Google Scholar 

  • Baselga A, Orme C (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812

    Article  Google Scholar 

  • de Bello F, Berg MP, Dias ATC, Diniz-Filho JAF, Götzenberger L, Hortal J, Ladle RJ, Lepš J (2015) On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot 50:349–357

    Article  Google Scholar 

  • de Bello F, Carmona CP, Dias AT, Götzenberger L, Moretti M, Berg MP (2021) Handbook of trait-based ecology: from theory to R tools. Cambridge University Press

    Book  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Machler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9:378–400

    Article  Google Scholar 

  • Cadotte MW, Carboni M, Si X, Tatsumi S (2019) Do traits and phylogeny support congruent community diversity patterns and assembly inferences. J Ecol 107(2065):2077

    Google Scholar 

  • Cadotte MW, Tucker CM (2017) Should Environmental Filtering be Abandoned? Trends Ecol Evol 32:429–437

    Article  PubMed  Google Scholar 

  • Camarota F, Powell S, Melo AS, Priest G, Marquis RJ, Vasconcelos HL (2016) Co-occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecol Evol 6:8907–8918

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerdá X, Arnan X, Retana J (2013) Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology. Myrmecol News 18(131):147

    Google Scholar 

  • Cerda X, Retana J, Cros S (1997) Thermal disruption of transitive hierarchies in mediterranean ant communities. J Animal Ecol. https://doi.org/10.2307/5982

    Article  Google Scholar 

  • Cerdá X, Retana J, Cros S (1998) Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Funct Ecol 12:45–55

    Article  Google Scholar 

  • Chambers J (2020) SoDA: functions and examples for “software for data analysis”. R package version 1.0-6.1. https://CRAN.R-project.org/package=SoDA

  • Chesson P (2000) Mechanisms of Maintenance of Species Diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Coyle JR, Halliday FW, Lopez BE, Palmquist KA, Wilfahrt PA, Hurlbert AH (2014) Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography 37:814–826

    Article  Google Scholar 

  • Cuezzo F, Guerrero RJ (2012) The Ant Genus Dorymyrmex Mayr (Hymenoptera: Formicidae: Dolichoderinae) in Colombia. Psyche A J Entomol. https://doi.org/10.1155/2012/516058

    Article  Google Scholar 

  • Dangles O, Herrera M, Carpio C, Lortie CJ (2018) Facilitation costs and benefits function simultaneously on stress gradients for animals. Proc R Soc B: Biol Sci 285:20180983

    Article  Google Scholar 

  • De Bello F, Lavorel S, Albert CH, Thuiller W, Grigulis K, Dolezal J, Janeček Š, Lepš J (2011) Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol Evol 2:163–174

    Article  Google Scholar 

  • Des Roches S, Post DM, Turley NE, Bailey JK, Hendry AP, Kinnison MT, Schweitzer JA, Palkovacs EP (2017) The ecological importance of intraspecific variation. Nat EcolEvol 2:57–64

    Google Scholar 

  • Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH, Dray MS (2018) Package ‘adespatial.’ R Package 2018:3–8

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Fisher BL, Cover SP (2007) Ants of North America: a guide to the genera. Univ of California Press

    Book  Google Scholar 

  • Frasconi Wendt C, Nunes A, Verble R, Santini G, Boieiro M, Branquinho C (2020) Using a space-for-time approach to select the best biodiversity-based indicators to assess the effects of aridity on Mediterranean drylands. Ecol Ind 113:106250

    Article  Google Scholar 

  • Germano DJ, Rathbun GB, Saslaw LR, Cypher BL, Cypher EA, Vredenburgh LM (2011) The San Joaquin Desert of California: Ecologically Misunderstood and Overlooked. Nat Areas J 31:138–147

    Article  Google Scholar 

  • Gibb H, Parr CL (2010) How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia 164:1061–1073

    Article  CAS  PubMed  Google Scholar 

  • Gibb H, Sanders NJ, Dunn RR, Arnan X, Vasconcelos HL, Donoso DA, Andersen AN, Silva RR, Bishop TR, Gomez C, Grossman BF, Yusah KM, Luke SH, Pacheco R, Pearce-Duvet J, Retana J, Tista M, Parr CL (2018) Habitat disturbance selects against both small and large species across varying climates. Ecography 41:1184–1193

    Article  Google Scholar 

  • Gibb H, Sanders NJ, Dunn RR, Watson S, Photakis M, Abril S, Andersen AN, Angulo E, Armbrecht I, Arnan X (2015) Climate mediates the effects of disturbance on ant assemblage structure. Proc R Soc b Biol Sci 282:20150418

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Gotzenberger L, de Bello F, Brathen KA, Davison J, Dubuis A, Guisan A, Leps J, Lindborg R, Moora M, Partel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities–approaches, patterns and prospects. Biol Rev Camb Philos Soc 87:111–127

    Article  PubMed  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Guenard B, Weiser MD, Gomez K, Narula N, Economo EP (2017) The Global Ant Biodiversity Informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecological News/osterreichische Gesellschaft Fur Entomofaunistik 24:83–89

    Google Scholar 

  • Guilherme DR, Souza JLP, Franklin E, Pequeno PACL, A. C. das Chagas, and F. B. Baccaro. (2019) Can environmental complexity predict functional trait composition of ground-dwelling ant assemblages? A test across the Amazon Basin. Acta Oecologica 99:103434

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press

    Book  Google Scholar 

  • He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2017) Package ‘dismo.’ Circles 9:1–68

    Google Scholar 

  • HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking Community Assembly through the Lens of Coexistence Theory. Annu Rev Ecol Evol Syst 43:227–248

    Article  Google Scholar 

  • Ibarra-Isassi J, Handa IT, Lessard J-P (2022) Community-wide trait adaptation, but not plasticity, explains ant community structure in extreme environments. Funct Ecol. https://doi.org/10.1111/1365-2435.14185

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly: Intraspecific variability and community assembly. J Ecol 98:1134–1140

    Article  Google Scholar 

  • Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A (2015) Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob Change Biol 21:1092–1102

    Article  Google Scholar 

  • Kaspari M, Weiser MD (1999) The size–grain hypothesis and interspecific scaling in ants. Funct Ecol 13:530–538

    Article  Google Scholar 

  • Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla-Buitrago GE, Boria RA, Soley-Guardia M, Anderson RP (2021) ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol Evol 12(9):1602–1608. https://doi.org/10.1111/2041-210X.13628

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164

    Article  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat. https://doi.org/10.1086/519400

    Article  PubMed  Google Scholar 

  • Kuczynski L, Grenouillet G (2018) Community disassembly under global change: evidence in favor of the stress-dominance hypothesis. Glob Change Biol 24:4417–4427

    Article  Google Scholar 

  • Laliberté, E., P. Legendre, B. Shipley, and M. E. Laliberté. 2014. Package ‘FD.’ Measuring functional diversity from multiple traits, and other tools for functional ecology:1.0–12.

  • Lembrechts JJ, Ashcroft MB, Frenne PD, Kemppinen J, Kopecký M, Luoto M, Maclean IMD, Crowther TW, Bailey JJ, Haesen S, Klinges DH, Niittynen P, Scheffers BR, Meerbeek KV, Aartsma P, Abdalaze O, Abedi M, Aerts R, Ahmadian N, Ahrends A, Alatalo JM, Alexander JM, Allonsius CN, Altman J, Ammann C, Andres C, Andrews C, Ardö J, Arriga N, Arzac A, Aschero V, Assis RL, Assmann JJ, Bader MY, Bahalkeh K, Barančok P, Barrio IC, Barros A, Barthel M, Basham EW, Bauters M, Bazzichetto M, Marchesini LB, Bell MC, Benavides JC, Alonso JLB, Berauer BJ, Bjerke JW, Björk RG, Björkman MP, Björnsdóttir K, Blonder B, Boeckx P, Boike J, Bokhorst S, Brum BNS, Brůna J, Buchmann N, Buysse P, Camargo JL, Campoe OC, Candan O, Canessa R, Cannone N, Carbognani M, Carnicer J, Casanova A, Cesarz S, Chojnicki B, Choler P, Chown SL, Cifuentes EF, Čiliak M, Contador T, Convey P, Cooper EJ, Cremonese E, Curasi SR, Curtis R, Cutini M, Dahlberg CJ, Daskalova GN, de Pablo MA, ChiesaS D, Dengler J, Deronde B, Descombes P, Cecco VD, Musciano MD, Dick J, Dimarco RD, Dolezal J, Dorrepaal E (2022) Global maps of soil temperature. Glob Change Biol 28(9):3110–3144

  • Longino JT, Coddington J (2002) The ant fauna of a tropical rain forest: estimating species richness three different ways. Encology 83:14

    Google Scholar 

  • Lortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004) Rethinking plant community theory. Oikos 107:433–438

    Article  Google Scholar 

  • Lortie CJ, Callaway RM (2006) Re-analysis of meta-analysis: support for the stress-gradient hypothesis. J Ecol 94:7–16

    Article  Google Scholar 

  • Lortie CJ, Filazzola A, Kelsey R, Hart AK, Butterfield HS (2018) Better late than never: a synthesis of strategic land retirement and restoration in California. Ecosphere 9:e02367

    Article  Google Scholar 

  • Lucero JE, Callaway RM, Faist AM, Lortie CJ (2021) An unfortunate alliance: Native shrubs increase the abundance, performance, and apparent impacts of Bromus tectorum across a regional aridity gradient. Basic Appl Ecol 57:41–53

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W (2012) How to measure and test phylogenetic signal. Methods Ecol Evol 3:743–756

    Article  Google Scholar 

  • Nakamura S, Tamura S, Taki H, Shoda-Kagaya E (2020) Propylene glycol: a promising preservative for insects, comparable to ethanol, from trapping to DNA analysis. Entomol Exp Appl 168:158–165

    Article  CAS  Google Scholar 

  • Nooten SS, Guénard B (2022) Ant communities in disturbed subtropical landscapes: is climate more important than stochastic processes? Oecologia 200:441–454

    Article  PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. (2010) Vegan: community ecology package. R package version 1.17–4. http://cran.r-project.org. Acesso em 23:2010.

  • Parr CL, Bishop TR (2022) The response of ants to climate change. Glob Change Biol 28:3188–3205

    Article  CAS  Google Scholar 

  • Parr CL, Dunn RR, Sanders NJ, Weiser MD, Photakis M, Bishop TR, Fitzpatrick MC, Arnan X, Baccaro F, Brandão CRF, Chick L, Donoso DA, Fayle TM, Gómez C, Grossman B, Munyai TC, Pacheco R, Retana J, Robinson A, Sagata K, Silva RR, Tista M, Vasconcelos H, Yates M, Gibb H (2017) GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv Div. https://doi.org/10.1111/icad.12211

    Article  Google Scholar 

  • Pavoine S, Gasc A, Bonsall MB, Mason NWH (2013) Correlations between phylogenetic and functional diversity: mathematical artefacts or true ecological and evolutionary processes? J Veg Sci 24:781–793

    Article  Google Scholar 

  • Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jedrzejewska B, Lima M, Kausrud K (2011) The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Res 46:15–27

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Retana J, Cerdá X (2000) Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123:436–444

    Article  CAS  PubMed  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. https://doi.org/10.1111/j.2041-210X.2011.00169.x

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schofield SF, Bishop TR, Parr CL (2016) Morphological characteristics of ant assemblages (Hymenoptera: Formicidae) differ among contrasting biomes. Myrmecol News 23(129):137

    Google Scholar 

  • Sommer S, Wehner R (2012) Leg allometry in ants: Extreme long-leggedness in thermophilic species. Arthropod Struct Dev 41:71–77

    Article  PubMed  Google Scholar 

  • Sosiak CE, Barden P (2021) Multidimensional trait morphology predicts ecology across ant lineages. Funct Ecol 35:139–152

    Article  CAS  Google Scholar 

  • Swenson NG (2014) Functional and phylogenetic ecology in R. Springer

    Book  Google Scholar 

  • Swenson NG, Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94:451–459

    Article  PubMed  Google Scholar 

  • Tschinkel WR, King JR (2017) Ant community and habitat limit colony establishment by the fire ant, Solenopsis invicta. Funct Ecol 31:955–964

    Article  Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  • Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252

    Article  PubMed  Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164

  • Weiser MD, Kaspari M (2006) Ecological morphospace of New World ants. Ecol Entomol 31:131–142

    Article  Google Scholar 

  • Westphal MF, Stewart JA, Tennant EN, Butterfield HS, Sinervo B (2016) Contemporary drought and future effects of climate change on the endangered blunt-nosed leopard lizard. Gambelia Sila Plos ONE 11:e0154838

    Article  PubMed  Google Scholar 

  • Whitford WG (2000) Keystone arthropods as webmasters in desert ecosystems. In: Coleman DC, Hendrix PF (eds) Invertebrates as webmasters in ecosystems. CABI Publishing

    Google Scholar 

  • Williams (1997) Draft recovery plan for upland species of the San Joaquin Valley, California. Region 1, U.S. Fish and Wildlife Service. https://ecos.fws.gov/docs/recovery_plan/980930a.pdf

  • Williams AP, Cook BI, Smerdon JE (2022) Rapid intensification of the emerging southwestern North American megadrought in 2020–2021. Nat Clim Chang 12:232–234

    Article  Google Scholar 

  • Williams AP, Cook ER, Smerdon JE, Cook BI, Abatzoglou JT, Bolles K, Baek SH, Badger AM, Livneh B (2020) Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368:314–318

    Article  CAS  PubMed  Google Scholar 

  • Winslow MD, Vogt JV, Thomas RJ, Sommer S, Martius C, Akhtar-Schuster M (2011) Science for improving the monitoring and assessment of dryland degradation. Land Degrad Dev 22:145–149

    Article  Google Scholar 

  • Wong M, Carmona C (2021) Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: lessons from natural assemblages. Methods Ecol Evol 12:946–957

    Article  Google Scholar 

  • Yates ML, Andrew NR, Binns M, Gibb H (2014) Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ 2:e271

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Michael Westphal for his role in facilitating site access and specimen collection, and Marina Goldgisser, Kevin Padula, Kathryn Ramirez, John English and Jason Evans for collecting the ant specimens.

Funding

JB was funded by an NSERC Graham Bell Scholarship and FGS at York University. CJL was funded by an NSERC DG.

Author information

Authors and Affiliations

Authors

Contributions

JB and CJL designed the experiment. JB processed, identified and measured the specimens. JB designed and completed all analyses and JB and CJL wrote the paper.

Corresponding author

Correspondence to Jenna Braun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Communicated by David Donoso.

This work uses a novel and easily replicable method that combines local traits and occurrences from open databases. We  showed that filtering shapes communities at the scale of species distributions.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4810 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, J., Lortie, C.J. Environmental filtering mediates desert ant community assembly at two spatial scales. Oecologia (2024). https://doi.org/10.1007/s00442-024-05559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00442-024-05559-2

Keywords

Navigation