Skip to main content
Log in

Lemming winter habitat: the quest for warm and soft snow

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

During the cold arctic winter, small mammals like lemmings seek refuge inside the snowpack to keep warm and they dig tunnels in the basal snow layer, usually formed of a soft depth hoar, to find vegetation on which they feed. The snowpack, however, is a heterogenous medium and lemmings should use habitats where snow properties favor their survival and winter reproduction. We determined the impact of snow physical properties on lemming habitat use and reproduction in winter by sampling their winter nests for 13 years and snow properties for 6 years across 4 different habitats (mesic, riparian, shrubland, and wetland) on Bylot Island in the Canadian High Arctic. We found that lemmings use riparian habitat most intensively because snow accumulates more rapidly, the snowpack is the deepest and temperature of the basal snow layer is the highest in this habitat. However, in the deepest snowpacks, the basal depth hoar layer was denser and less developed than in habitats with shallower snowpacks, and those conditions were negatively related to lemming reproduction in winter. Shrubland appeared a habitat of moderate quality for lemmings as it favored a soft basal snow layer and a deep snowpack compared with mesic and wetland, but snow conditions in this habitat critically depend on weather conditions at the beginning of the winter. With climate change, a hardening of the basal layer of the snowpack and a delay in snow accumulation are expected, which could negatively affect the winter habitat of lemmings and be detrimental to their populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The lemming data analysed in this study are available from the NordicanaD repository (https://doi.org/10.5885/45400AW-9891BD76704C4CE2) and the other datasets are available from the corresponding author.

References

  • Audet B, Gauthier G, Lévesque E (2007) Feeding ecology of greater snow goose goslings in mesic tundra on Bylot Island, Nunavut, Canada. Condor 109:361–376

    Article  Google Scholar 

  • Banks EM, Brooks RJ, Schnell J (1975) A radiotracking study of home range and activity of the brown lemming (Lemmus trimucronatus). J Mammal 56:888–901

    Article  Google Scholar 

  • Barrere M, Domine F, Belke-Brea M, Sarrazin D (2018) Snowmelt events in autumn can reduce or cancel the soil warming effect of snow-vegetation interactions in the arctic. J Clim 31:9507–9518

    Article  Google Scholar 

  • Barton K (2022) MuMIn: Multi-model inference. R package version 0.12.2

  • Batzli GO, Pitelka FA, Cameron GN (1983) Habitat use by lemming near Barrow, Alaska. Holarct Ecol 6:255–262

    Google Scholar 

  • Berteaux D, Gauthier G, Domine F, Ims RA, Lamoureux SF, Lévesque E, Yoccoz N (2017) Effects of changing permafrost and snow conditions on tundra wildlife: critical places and times. Arctic Sci 3:65–90

    Article  Google Scholar 

  • Bilodeau F, Gauthier G, Berteaux D (2013) The effect of snow cover on lemming population cycles in the Canadian High Arctic. Oecologia 172:1007–1016

    Article  PubMed  Google Scholar 

  • Boonstra R, Andreassen HP, Boutin S, Hušek J, Ims RA, Krebs CJ, Skarpe C, Wabakken P (2016) Why do the boreal forest ecosystems of Northwestern Europe differ from those of Western North America? Bioscience 66:722–734

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2004) Advanced distance sampling: estimating abundance of biological populations. Oxford University Press, London

    Google Scholar 

  • Chami P, Antoine R, Sahai A (2007) On efficient confidence intervals for the log-normal mean. J Appl Sci 7:1790–1794

    Article  Google Scholar 

  • Chappell MA (1980) Thermal energetics and thermoregulatory costs of small arctic mammals. J Mammal 61:278–291

    Article  Google Scholar 

  • Coe PK, Clark DA, Nielson RM, Gregory SC, Cupples JB, Hedrick MJ, Johnson BK, Jackson DH (2018) Multiscale models of habitat use by mule deer in winter. J Wildl Manag 82:1285–1299

    Article  Google Scholar 

  • Conger SM, McClung DM (2009) Instruments and methods: comparison of density cutters for snow profile observations. J Glaciol 55:163–169

    Article  Google Scholar 

  • Dolant C, Montpetit B, Langlois A, Brucker L, Zolina O, Johnson CA, Royer A, Smith P (2018) Assessment of the barren ground caribou die-off during winter 2015–2016 using passive microwave observations. Geophys Res Lett 45:4908–4916

    Article  Google Scholar 

  • Domine F, Taillandier AS, Cabanes A, Douglas TA, Sturm M (2009) Three examples where the specific surface area of snow increased over time. Cryosphere 3:31–39

    Article  Google Scholar 

  • Domine F, Bock J, Morin S, Giraud G (2011) Linking the effective thermal conductivity of snow to its shear strength and density. J Geophys Res Earth Surf 116:1–10

    Article  Google Scholar 

  • Domine F, Gallet JC, Bock J, Morin S (2012) Structure, specific surface area and thermal conductivity of the snowpack around Barrow, Alaska. J Geophys Res Atmos 117:1–12

    Article  Google Scholar 

  • Domine F, Barrere M, Morin S (2016) The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime. Biogeosci Discuss 13:6471–6486

    Article  Google Scholar 

  • Domine F, Belke-Brea M, Sarrazin D, Arnaud L, Poirier M, Joint T (2018a) Soil moisture, wind speed and depth hoar formation in the Arctic snowpack. J Glaciol 64:1–29

    Article  Google Scholar 

  • Domine F, Gauthier G, Vionnet V, Fauteux D, Dumont M, Barrere M (2018b) Snow physical properties may be a significant determinant of lemming population dynamics in the high Arctic. Arctic Sci 4:813–826

    Article  Google Scholar 

  • Domine F, Lackner G, Sarrazin D, Poirier M, Belke-Brea M (2021) Meteorological, snow and soil data (2013–2019) from a herb tundra permafrost site at Bylot Island, Canadian high Arctic, for driving and testing snow and land surface models. Earth Syst Sci Data 13:4331–4348

    Article  Google Scholar 

  • Domine F, Fourteau K, Picard G, Lackner G, Sarrazin D, Poirier M (2022) Permafrost cooled in winter by thermal bridging through snow-covered shrub branches. Nat Geosci 15:554–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchesne D, Gauthier G, Berteaux D (2011a) Habitat selection, reproduction and predation of wintering lemmings in the Arctic. Oecologia 167:967–980

    Article  PubMed  Google Scholar 

  • Duchesne D, Gauthier G, Berteaux D (2011b) Evaluation of a method to determine the breeding activity of lemmings in their winter nests. J Mammal 92:511–516

    Article  Google Scholar 

  • Fauteux D, Gauthier G (2022) Density-dependent demography and movements in a cyclic brown lemming population. Ecol Evol 12:e9055

    Article  PubMed  PubMed Central  Google Scholar 

  • Fauteux D, Gauthier G, Berteaux D (2015) Seasonal demography of a cyclic lemming population in the Canadian Arctic. J Anim Ecol 84:1412–1422

    Article  PubMed  Google Scholar 

  • Fauteux D, Gauthier G, Berteaux D (2016) Top-down limitation of lemmings revealed by experimental reduction of predators. Ecology 97:3231–3241

    Article  PubMed  Google Scholar 

  • Fauteux D, Slevan-Tremblay G, Gauthier G, Berteaux D (2017) Feeding preference of brown lemmings (Lemmus trimucronatus) for plant parts of Arctic willow (Salix arctica). Polar Biol 40:2329–2334

    Article  Google Scholar 

  • Feng C, Wang H, Lu N, Chen T, He H, Lu Y, Tu XM (2014) Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry 26:105–109

    PubMed  PubMed Central  Google Scholar 

  • Fourteau K, Hagenmuller P, Roulle J, Domine F (2022) On the use of heated needle probes for measuring snow thermal conductivity. J Glaciol 68:705–719

    Article  Google Scholar 

  • Fuller WA, Martell AM, Smith RFC, Speller SW (1975) High-arctic lemmings, Dicrostonyx groenlandicus. II Demography. Can J Zool 53:867–878

    Article  Google Scholar 

  • Gallet J-CC, Domine F, Zender CS, Picard G (2009) Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. Cryosphere 3:167–182

    Article  Google Scholar 

  • Gauthier G, Berteaux D, Bêty J, Tarroux A, Therrien J-F, McKinnon L, Legagneux P, Cadieux M-C (2011) The tundra food web of Bylot Island in a changing climate and the role of exchanges between ecosystems. Ecoscience 18:223–235

    Article  Google Scholar 

  • Gauthier G, Bêty J, Cadieux M-C, Legagneux P, Doiron M, Chevallier C, Lai S, Tarroux A, Berteaux D (2013) Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos Trans Royal Soc London Sers B, BiolSci 368:20120482

    Article  Google Scholar 

  • Gilg O, Hanski I, Sittler B (2003) Cyclic dynamics in a simple vertebrate predator-prey community. Science 302:866–868

    Article  CAS  PubMed  Google Scholar 

  • Gilg O, Sittler B, Hanski I (2009) Climate change and cyclic predator-prey population dynamics in the high Arctic. Glob Change Biol 15:2634–2652

    Article  Google Scholar 

  • Glass TW, Breed GA, Liston GE, Reinking AK, Robards MD, Kielland K (2021) Spatiotemporally variable snow properties drive habitat use of an Arctic mesopredator. Oecologia 195:887–899

    Article  PubMed  Google Scholar 

  • Halpin MA, Bissonette JA (1988) Influence of snow depth on prey availability and habitat use by red fox. Can J Zool 66:587–592

    Article  Google Scholar 

  • Hansen BB, Aanes R, Herfindal I, Kohler J, Seather B-E (2011) Climate, icing, and wild arctic reindeer: past relationships and future prospects. Ecology 92:1917–1923

    Article  PubMed  Google Scholar 

  • Hansen BB, Isaksen K, Benestad RE, Kohler J, Pedersen Å, Loe LE, Coulson SJ, Larsen JO, Varpe Ø (2014) Warmer and wetter winters: characteristics and implications of an extreme weather event in the high Arctic. Environ Res Lett 9:114021

    Article  Google Scholar 

  • Ims RA, Henden JA, Killengreen ST (2008) Collapsing population cycles. Trends Ecol Evol 23:79–86

    Article  PubMed  Google Scholar 

  • Kausrud KL, Mysterud A, Steen H, Vik JO, Østbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhøy T, Stenseth NC (2008) Linking climate change to lemming cycles. Nature 456:93–97

    Article  CAS  PubMed  Google Scholar 

  • Langlois A, Johnson CA, Montpetit B, Royer A, Blukacz-Richards EA, Neave E, Dolant C, Roy A, Arhonditsis G, Kim DK, Kaluskar S, Brucker L (2017) Detection of rain-on-snow (ROS) events and ice layer formation using passive microwave radiometry: a context for Peary caribou habitat in the Canadian Arctic. Remote Sens Environ 189:84–95

    Article  Google Scholar 

  • Le Vaillant M, Erlandsson R, Elmhagen B, Hörnfeldt B, Eide NE, Angerbjörn A (2018) Spatial distribution in Norwegian lemming Lemmus lemmus in relation to the phase of the cycle. Polar Biol 41:1391–1403

    Article  Google Scholar 

  • Liston GE, Hiemstra CA (2011) The changing cryosphere: Pan-Arctic snow trends (1979–2009). J Clim 24:5691–5712

    Article  Google Scholar 

  • MacLean SF, Fitzgerald BM, Pitelka FA (1974) Cycles in arctic lemmings: winter reproduction and predation by weasels. Arct Alp Res 6:1–12

    Article  Google Scholar 

  • Marbouty D (1980) An experimental study of temperature-gradient metamorphism. J Glaciol 26:303–312

    Article  Google Scholar 

  • Martin ME, Moriarty KM, Pauli JN (2020) Forest structure and snow depth alter the movement patterns and subsequent expenditures of a forest carnivore, the Pacific marten. Oikos 129:356–366

    Article  Google Scholar 

  • Millar JS (2001) On reproduction in lemmings. Ecoscience 8:145–150

    Article  Google Scholar 

  • Miller DL, Rexstad E, Thomas L, Laake JL, Marshall L (2019) Distance sampling in R. J Stat Softw 89:1–28

    Article  Google Scholar 

  • Morin S, Domine F, Arnaud L, Picard G (2010) In-situ monitoring of the time ecvolution of the effective thermal conductivity of snow. Cold Reg Sc Technol 64:73–80

    Article  Google Scholar 

  • Morris DW, Davidson DL, Krebs CJ (2000) Measuring the ghost of competition: Insights from density-dependent habitat selection on the co-existence and dynamics of lemmings. Evol Ecol Res 2:41–67

    Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Poirier M, Gauthier G, Domine F (2019) What guides lemmings movements through the snowpack? J Mammal 100:1416–1426

    Article  Google Scholar 

  • Poirier M, Fauteux D, Gauthier G, Domine F, Lamarre JF (2021) Snow hardness impacts intranivean locomotion of arctic small mammals. Ecosphere 12:e03835

    Article  Google Scholar 

  • Pomeroy JWW, Brun E (1990) Physical properties of snow. Snow Ecol 97:45–126

    Google Scholar 

  • Predavec M, Krebs CJ (2000) Microhabitat utilisation, home ranges, and movement patterns of the collared lemming (Dicrostonyx groenlandicus) in the central Canadian Arctic. Can J Zool 78:1885–1890

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Reid DG, Bilodeau F, Krebs CJ, Gauthier G, Alice J, Gilbert BS, Leung MC, Duchesne D, Hofer E (2012) Lemming winter habitat choice : a snow-fencing experiment. Oecologia 168:935–946

    Article  PubMed  Google Scholar 

  • Rennert KJ, Roe G, Putkonen J, Bitz CM (2009) Soil thermal and ecological impacts of rain on snow events in the circumpolar arctic. J Clim 22:2302–2315

    Article  Google Scholar 

  • Schmidt NM, Van Beest FM, Dupuch A, Hansen LH, Pierre J, Morris DW (2021) Long - term patterns in winter habitat selection, breeding and predation in a density - fluctuating, high Arctic lemming population. Oecologia 195:927–935

    Article  PubMed  Google Scholar 

  • Seyer Y, Gauthier G, Fauteux D, Therrien JF (2020) Resource partitioning among avian predators of the Arctic tundra. J Anim Ecol 89:2934–2945

    Article  PubMed  Google Scholar 

  • Soininen EM, Gauthier G, Bilodeau F, Berteaux D, Gielly L, Taberlet P, Gussarova G, Bellemain E, Hassel K, Stenøien HK, Epp L, Schrøder-Nielsen A, Brochmann C, Yoccoz NG (2015) Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS ONE 10:1–18

    Article  CAS  Google Scholar 

  • Sorum MS, Joly K, Wells AG, Cameron MD, Hilderbrand GV, Gustine DD (2019) Den-site characteristics and selection by brown bears (Ursus arctos) in the central Brooks Range of Alaska. Ecosphere 10:e02822

    Article  Google Scholar 

  • St-Georges M, Nadeau S, Lambert D (1995) Winter habitat use by ptarmigan, snowshoe hares, red foxes, and river otters in the boreal forest - tundra transition zone of western Quebec. Can J Zool 73:755–764

    Article  Google Scholar 

  • Stien A, Ims RA, Albon SD, Fuglei E, Irvine RJ, Ropstad E, Halvorsen O, Langvatn R, Loe LE, Veiberg V, Yoccoz NG (2012) Congruent responses to weather variability in high arctic herbivores. Biol Let 8:1002–1005

    Article  Google Scholar 

  • Sturm M, Benson CS (1997) Vapor transport, grain growth and depth-hoar development in the subarctic snow. J Glaciol 43:42–59

    Article  Google Scholar 

  • Sturm M, Benson C (2004) Scales of spatial heterogeneity for perennial and seasonal snow layers. Ann Glaciol 38:253–260

    Article  Google Scholar 

  • Sturm M, Holmgren J, Liston GE (1995) A seasonal snow cover classification system for local to global applications. J Clim 8:1261–1283

    Article  Google Scholar 

  • Sturm M, Holmgren J, König M, Morris K (1997) Thermal conductivity of seasonal snow. J Glaciol 43:26–41

    Article  Google Scholar 

  • Sturm M, McFadden JP, Liston GE, Chapin S III, Racine CH, Holmgren J (2001) Snow – shrub interactions in arctic tundra : a hypothesis with climatic implications. J Clim 14:336–344

    Article  Google Scholar 

  • Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Change Biol 12:686–702

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Von Beckerath X, Benadi G, Gilg O, Sittler B, Yannic G, Klein A-M, Eitzinger B (2021) Long-term monitoring reveals topographical features and vegetation explain winter habitat use of an arctic rodent. Arctic Sci 8:349–361

    Article  Google Scholar 

  • Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:4002

    Article  Google Scholar 

Download references

Acknowledgements

We thank Gabriel Bergeron, James Akpaleeapik, Madelaine Proulx, Qalaapik Enookolo, Jaimie Vincent and all the other people involved in the long-term monitoring of lemming winter nests in the field. We also thank Mathieu Barrère and Marianne Valcourt for their help with snow sampling. We thank Marie-Christine Cadieux for her precious help regarding database management. We thank Christophe Kinnard for sharing Reconyx data with us and Denis Sarrazin for his technical support with automated weather stations. We also thank David Bolduc for his help with the map in appendix.

Funding

This work was funded by Sentinel North program of the Canada First Research Excellence Fund, the Fonds de recherche du Québec—Nature et technologies, the Natural Sciences and Engineering Research Council of Canada, the Polar Continental Shelf Program of Natural Resources Canada, the ArcticNet Network of Centre of Excellence, the Fondation de l’Université Laval and the W. Garfield Weston Foundation.

Author information

Authors and Affiliations

Authors

Contributions

MP, FD, DF conducted fieldwork. MP performed statistical analyses, with support from DF and GG. MP wrote the original manuscript draft with substantial contribution from GG, FD, DF. GG and FD co-supervised the project and obtained funding.

Corresponding author

Correspondence to Mathilde Poirier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jean-François Le Galliard.

We documented the favorable role of deep snow in lemming habitat use, as well as its tradeoff as harder snow was found in deeper snowpack, which has a negative impact on lemming winter reproduction.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 143 KB)

Supplementary file2 (PDF 832 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poirier, M., Gauthier, G., Domine, F. et al. Lemming winter habitat: the quest for warm and soft snow. Oecologia 202, 211–225 (2023). https://doi.org/10.1007/s00442-023-05385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-023-05385-y

Keywords

Navigation