Abstract
Fruit traits have historically been interpreted as plant adaptations to their seed dispersers. On the other hand, different environmental factors, which vary spatially and temporally, can shape fruit-trait variation. The mistletoe Tristerix corymbosus has a latitudinal distribution along the South American Pacific rim that encompasses two different biomes, the matorral of central Chile and the temperate forest that extends south of the matorral. This mistletoe shows contrasting fruiting phenology (spring vs summer), fruit color (yellow vs green), and seed dispersers (birds vs marsupial) in these two biomes. We characterized geographic variation of morphological and nutritional fruit traits of T. corymbosus to evaluate which macroecological factor, biome or latitude, better explains spatial variation in these variables. For each of 22 populations, we obtained environmental data (temperature, precipitation, and canopy cover), measured fruit and seed morphology traits (size, shape, and weight), and pulp moisture and nutritional content (fiber, protein, fat, carbohydrates, ash, and caloric content). Patterns of variation for each variable were described by fitting and comparing five different simple models varying in slope, intercept or both. Fruit morphology showed a clear biome-related disruptive pattern, seed morphological traits were unrelated to either biome or latitude, whereas nutritional variables showed diverse patterns. Different environmental factors seem to affect fruit development and phenology, determining the observed fruit characteristics, with seed dispersers playing a minor role in shaping these patterns. More generally, the contrasting plant-seed disperser associations we addressed can be interpreted as the outcome of an ecological-fitting rather than of a coevolutionary process.
Similar content being viewed by others
Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Change history
10 December 2022
A Correction to this paper has been published: https://doi.org/10.1007/s00442-022-05294-6
References
Aizen MA (2003) Influences of animal pollination and seed dispersal on winter flowering in a temperate mistletoe. Ecology 84:2613–2627. https://doi.org/10.1890/02-0521
Aizen MA, Woodcock H (1992) Latitudinal trends in acorn size in Eastern North-American species of Quercus. Can J Bot-Revue Canadienne De Botanique 70:1218–1222. https://doi.org/10.1139/b92-153
Amico GC (2007) Variación geográfica en la coloración de los frutos del muérdago Tristerix corymbosus (Loranthaceae): efecto de la historia evolutiva, del ambiente, de los dispersores de semillas y de los hospedadores. Univ, Nacional del Comahue, Argentina
Amico GC, Aizen MA (2000) Mistletoe seed dispersal by a marsupial. Nature 408:929–930. https://doi.org/10.1038/35050170
Amico GC, Aizen MA (2005) Dispersión de semillas por aves en un bosque templado de Sudamérica austral: ¿quién dispersa a quién? Ecol Austral 15:89–100
Amico GC, Nickrent DL (2009) Population structure and phylogeography of the mistletoes Tristerix corymbosus and T. aphyllus (Loranthaceae) using chloroplast DNA sequence variation. Am J Bot 96:1571–1580. https://doi.org/10.3732/ajb.0800302
Amico GC, Vidal-Russell R, Nickrent D (2007) Phylogenetic relationships and ecological speciation in the mistletoe Tristerix (Loranthaceae): the influence of pollinators, dispersers, and hosts. Am J Bot 94:558–567. https://doi.org/10.3732/ajb.94.4.558
Amico GC, Rodrigues-Cabal M, Aizen MA (2009) The potential key seed-dispersing role of the arboreal marsupial Dromiciops gliroides. Acta Oecologica 35:8–13. https://doi.org/10.1016/j.actao.2008.07.003
Amico GC, Rodriguez-Cabal MA, Aizen MA (2011) Geographic variation in fruit colour is associated with contrasting seed disperser assemblages in a south-Andean mistletoe. Ecography 34:318–326. https://doi.org/10.1111/j.1600-0587.2010.06459.x
Amico GC, Vidal-Russell R, Aizen MA, Nickrent D (2014) Genetic diversity and population structure of the mistletoe Tristerix corymbosus (Loranthaceae). Plant Syst Evol 300:153–162. https://doi.org/10.1007/s00606-013-0867-x
Amico GC, Sasal Y, Vidal-Russell R et al (2017) Consequences of disperser behaviour for seedling establishment of a mistletoe species. Austral Ecol 42:900–907. https://doi.org/10.1111/aec.12517
Arista M, Talavera M, Berjano R, Ortiz PL (2013) Abiotic factors may explain the geographical distribution of flower colour morphs and the maintenance of colour polymorphism in the scarlet pimpernel. J Ecol 101:1613–1622. https://doi.org/10.1111/1365-2745.12151
Armesto JJ, Rozzi R, Miranda P, Sabag C (1987) Plant/frugivore interactions in South American temperate forest. Rev Chil Hist Nat 60:321–336
Atencio N, Vidal Russell R, Chacoff NP, Amico GC (2021) Host range dynamics at different scales: host use by a hemiparasite along its geographical distribution. Plant Biol 23:612–620. https://doi.org/10.1111/plb.13264
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01
Bollen A, Donati G, Fietz J et al (2005) An intersite comparison of fruit characteristics in Madagascar: evidence for selection pressure through abiotic constraints rather than through co-evolution. In: Dew JL, Boubli JP (eds) Tropical fruits and frugivores: the search for strong interactors. Springer, Netherlands, Dordrecht, pp 93–119
Burnham PK, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. https://doi.org/10.1177/0049124104268644
Cabrera AL, Willink A (1980) Biogeografía de América Latina. Secretaría General de la Organización de los Estados Americanos, Washington, District of Columbia
Chen X, Kohyama TS, Cannon CH (2018) Associated morphometric and geospatial differentiation among 98 species of stone oaks (Lithocarpus). PLoS ONE 13:e0199538. https://doi.org/10.1371/journal.pone.0199538
Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34:1–24. https://doi.org/10.18637/jss.v034.i02
Cruz-Tejada DM, Acosta-Rojas DC, Stevenson PR (2018) Are seeds able to germinate before fruit color ripening? Evidence from six Neotropical bird-dispersed plant species. Ecosphere 9:e02174. https://doi.org/10.1002/ecs2.2174
Davidson NJ, True KC, Pate JS (1989) Water relations of the parasite: host relationships between the mistletoe Amyema linophyllum (Fezl.) Tieghem and Casuarina obesa Miq. Oecologia 80:321–330. https://doi.org/10.1007/BF00379033
Debussche M, Cortez J, Rimbault I (1987) Variation in fleshy fruit composition in the mediterranean region: the importance of ripening season, life-form, fruit type and geographical distribution. Oikos 49:244–252. https://doi.org/10.2307/3565758
de López Buen LL, Ornelas JF (2001) Seed dispersal of the mistletoe Psittacanthus schiedeanus by birds in Central Veracruz, Mexico. Biotropica 33:487–494. https://doi.org/10.1111/j.1744-7429.2001.tb00202.x
e López Buen LL, Ornelas JF (2002) Host compatibility of the cloud forest mistletoe Psittacanthus schiedeanus (Loranthaceae) in Central Veracruz, Mexico. Am J Bot 89:95–102. https://doi.org/10.3732/ajb.89.1.95
Ehleringer JR, Marshall JD (1995) Water relations. In: Press MC, Graves JD (eds) Parasitic plants. Chapman and Hall, London, UK, pp 125–140
Eriksson O, Ehrlen J (1991) Phenological variation in fruit characteristics in vertebrate-dispersed plants. Oecologia (berlin) 86:463–470. https://doi.org/10.1007/BF00318311
Fontúrbel FE, Franco LM, Bozinovic F et al (2022) The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests. Ecol Evol 12:e8645. https://doi.org/10.1002/ece3.8645
Garcia D, Zamora R, Gomez JM et al (2000) Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J Ecol 88:436–446. https://doi.org/10.1046/j.1365-2745.2000.00459.x
Godschalk SKB (1983) The morphology of some South African mistletoe fruits. S Afr J Bot 2:52–56. https://doi.org/10.1016/S0022-4618(16)30145-0
Gómez JM, Perfectti F, Armas C et al (2020) Within-individual phenotypic plasticity in flowers fosters pollination niche shift. Nat Commun 11:4019. https://doi.org/10.1038/s41467-020-17875-1
Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15. https://doi.org/10.1017/S0094837300004310
Guerra TJ, Pizo MA (2014) Asymmetrical dependence between a neotropical mistletoe and its avian seed disperser. Biotropica 46:285–293. https://doi.org/10.1111/btp.12112
Hampe A (2003) Large-scale geographical trends in fruit traits of vertebrate-dispersed temperate plants. J Biogeography 30:487–496. https://doi.org/10.1046/j.1365-2699.2003.00852.x
Heldrich K (2000) Official methods of analysis of the association of official analytical chemists. Association of Official Chemists, Arlington, VA 50th edn. vol. 2.
Herrera CM (2002) Seed dispersal by vertebrates. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell, Oxford, pp 185–208
Ho LC (1992) Fruit growth and sink strength. In: Marshall C, Grace J (eds) Fruit and seed production: aspects of development, enviromental physiology and ecology. Cambridge University Press, Cambrige, pp 101–124
Janzen DH (1980) When is it coevolution? Evolution 34:611–612. https://doi.org/10.1111/j.1558-5646.1980.tb04849.x
Janzen DH (1985) On ecological fitting. Oikos 45:308–310. https://doi.org/10.2307/3565565
Jordano P (1995) Angiosperm fleshy fruits and seed dispersers—a comparative-analysis of adaptation and constraints in plant-animal Interactions. Am Nat 145:163–191. https://doi.org/10.1086/285735
Karger DN, Conrad O, Böhner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4:170122. https://doi.org/10.1038/sdata.2017.122
Kassambara A, Mundt F (2017) Package ‘factoextra.’ Extract and visualize the results of multivariate data analyses 76:2
Koski MH, Ashman T-L (2015) Floral pigmentation patterns provide an example of Gloger’s rule in plants. Nat Plants. https://doi.org/10.1038/NPLANTS.2014.7
Kuijt J (1988) Revision of Tristerix (Loranthaceae). Am Soc Plant Taxon 19:61
Ladley JJ, Kelly D (1996) Dispersal, germination and survival of New Zealand mistletoes (Loranthaceae): dependence on birds. N Z J Ecol 20:69–79
Mack AL (1993) The sizes of vertebrate-dispersed fruits: a neotropical-paleotropical comparison. Am Nat 142:840–856. https://doi.org/10.1086/285575
Marshall C, Grace J (1992) Fruit and seed production: aspects of development, environmental physiology and ecology. Cambridge University Press, Cambridge
Mathiasen RL, Nickrent DL, Shaw DC, Watson DM (2008) Mistletoes: pathology, systematics, ecology, and management. Plant Dis 92:988–1006. https://doi.org/10.1094/PDIS-92-7-0988
Moles AT, Ackerly DD, Tweddle JC et al (2007) Global patterns in seed size. Glob Ecol Biogeogr 16:109–116. https://doi.org/10.1111/j.1466-8238.2006.00259.x
Murray BR, Brown AHD, Dickman CR, Crowther MS (2004) Geographical gradients in seed mass in relation to climate. J Biogeogr 31:379–388. https://doi.org/10.1046/j.0305-0270.2003.00993.x
Norton DA, Carpenter MA (1998) Mistletoes as parasites: host specificity and speciation. Trends Ecol Evol 13:101–105. https://doi.org/10.1016/S0169-5347(97)01243-3
Núñez CI, Amico GC (2011) Adquisición de carbono en frutos de color verde del muérdago Tristerix corymbosus (Loranthaceae). Boletín De La Sociedad Argentina De Botánica 46:125–130
Okubamichael DY, Rasheed MZ, Griffiths ME, Ward D (2011) Avian consumption and seed germination of the hemiparasitic mistletoe Agelanthus natalitius (Loranthaceae). J Ornithol 152:643–649. https://doi.org/10.1007/s10336-010-0624-7
R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed 23 June 2022
Restrepo C (1987) Aspectos ecológicos de la diseminación de cinco especies de muérdagos por aves. Humboldtia 1:65–116
Ridley HN (1930) The dispersal of plants throughout the world. Ashford, UK
Rodríguez-Gironés MA, Santamaría L (2004) Why are so many bird flowers red? PLoS Biol 2:e350. https://doi.org/10.1371/journal.pbio.0020350
Schaefer HM, Schaefer V (2007) The evolution of visual fruit signals: concepts and constraints. In: Dennis AJ, Schupp EW, Green RJ (eds) Seed dispersal: theory and its application in a changing world. CAB Intl, pp 59–79
Sinnott-Armstrong MA, Downie AE, Federman S et al (2018) Global geographic patterns in the colours and sizes of animal-dispersed fruits. Glob Ecol Biogeogr 27:1339–1351. https://doi.org/10.1111/geb.12801
Snow BK, Snow DW (1988) Birds and berries. T. & A.D. Poyser, Calton
Stacklies W, Redestig H, Scholz M et al (2007) pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167. https://doi.org/10.1093/bioinformatics/btm069
Stournaras KE, Prum RO, Schaefer HM (2015) Fruit advertisement strategies in two Neotropical plant–seed disperser markets. Evol Ecol 29:489–509. https://doi.org/10.1007/s10682-015-9766-7
Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, Chicago
Valenta K, Nevo O (2020) The dispersal syndrome hypothesis: how animals shaped fruit traits, and how they did not. Funct Ecol 34:1158–1169. https://doi.org/10.1111/1365-2435.13564
van der Pijl L (1982) Principles of dispersal in higher plants. Third revised and expanded edition, 3rd edn. Springer-Verlag, Berlin
Vazquez MS, Rodriguez-Cabal MA, Amico GC (2022) The forest gardener: a marsupial with a key seed-dispersing role in the Patagonian temperate forest. Ecol Res 37:270–283. https://doi.org/10.1111/1440-1703.12289
Veit H, Garleff K (1996) Evolución del Paisaje Cuaternario y los Suelos en Chile Central-Sur. In: Armesto JJ, Villagrán C, Arroyo MTK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago de Chile, pp 29–50
Voigt FA, Bleher B, Fietz J et al (2004) A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages. Oecologia 141:94–104. https://doi.org/10.1007/s00442-004-1654-8
Acknowledgements
We thank Mariano Rodriguez Cabal, Leonardo Amico, Romina Vidal Russell, and Cecilia Smith-Ramirez for their help in the field. Special thanks go to Romina Vidal Russell for their critical reading and useful comments on a previous version of this manuscript. We also thank Corporación Nacional Forestal (Chile), Universidad Austral (Chile) and the Administración de Parques Nacionales (Argentina) for granting permits to work in some populations.
Funding
Financial support was provided from Sigma Xi, the National Geographic Society and ANPCT-FONCYT (PICT-2328).
Author information
Authors and Affiliations
Contributions
GCA and MAA conceived the idea; GCA collected data; AdV and GCA analyzed the data; GS-H conducted nutritional content analyses; GCA and MAA wrote the original draft; all authors contributed to the final version.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by David M Watson.
The original online version of this article was revised: Revised version of figures 6 and 7 updated.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Amico, G.C., di Virgilio, A., Schmeda-Hirschmann, G. et al. Clinal versus disruptive latitudinal variation in fruit traits of a South American mistletoe. Oecologia 200, 397–411 (2022). https://doi.org/10.1007/s00442-022-05282-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00442-022-05282-w