Skip to main content

Bird rookery nutrient over-enrichment as a potential accelerant of mangrove cay decline in Belize

Abstract

Coastal eutrophication is an issue of serious global concern and although nutrient subsidies can enhance primary productivity of coastal wetlands, they can be detrimental to their long-term maintenance. By supplying nutrients to coastal ecosystems at levels comparable to intensive agriculture practices, roosting colonial waterbirds provide a natural experimental design to examine the impacts of anthropogenic nutrient enrichment in these systems. We tested the hypothesis that long-term nutrient enrichment from bird guano deposition is linked to declines in island size, which may subsequently decrease the stability and resilience of mangrove cays in Belize. We combined remote sensing analysis with field- and lab-based measurements of forest structure, sediment nutrients, and porewater nutrients on three pairs of rookery and control cays in northern, central, and southern Belize. Our results indicate that rookery cays are disappearing approximately 13 times faster than cays without seasonal or resident seabird populations. Rookery cays were associated with a significantly higher concentration of nitrogen (N) in mangrove leaves and greater aboveground biomass, suggesting that eutrophication from bird guano contributes to increased aboveground productivity. Sediments of rookery cays also had lower percentages of soil organic matter and total N and carbon (C) than control islands, which suggests that eutrophication accelerates organic matter decomposition resulting in lower total C stocks on rookery cays. Our results indicate that coastal eutrophication can reduce ecosystem stability by contributing to accelerated cay loss, with potential consequences for mangrove resilience to environmental variability under contemporary and future climatic scenarios.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and materials

The data were deposited in Mendeley Data under the https://doi.org/10.17632/ymzp3grrrp.1

Code availability

All software used and reference to specific code is provided in this manuscript.

References

  • Adame MF, Fry B, Gamboa JN, Herrera-Silveira JA (2015) Nutrient subsidies delivered by seabirds to mangrove islands. Mar Ecol Prog Ser 525:15–24. https://doi.org/10.3354/meps11197

    CAS  Article  Google Scholar 

  • Alongi DM, Clough BF, Roberston AI (2005) Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Aquat Bot 82:121–131

    Google Scholar 

  • Anderson WB, Polis GA (1999) Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118:324–332. https://doi.org/10.1007/s004420050733

    Article  PubMed  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C et al (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193. https://doi.org/10.1890/10-1510.1

    Article  Google Scholar 

  • Bland LM, Regan TJ, Dinh MN et al (2017) Using multiple lines of evidence to assess the risk of ecosystem collapse. Proc R Soc B Biol Sci 284:660. https://doi.org/10.1098/rspb.2017.0660

    Article  Google Scholar 

  • Buck DG, Esselman PC, Jiang S et al (2019) Seasonal fluxes of dissolved nutrients in streams of catchments dominated by Swidden agriculture in the Maya forest of Belize Central America. Water 11:664

    CAS  Google Scholar 

  • Buelow C, Sheaves M (2015) A birds-eye view of biological connectivity in mangrove systems. Estuar Coast Shelf Sci 152:33–43

    Google Scholar 

  • Burke L, Sugg Z (2006) Hydrologic modeling of watersheds discharging adjacent to the meso-American reef analysis summary. World Resources Institute, Washington, DC

    Google Scholar 

  • Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Bio Ecol 350:46–72

    Google Scholar 

  • Cabaço S, Apostolaki ET, García-Marín P et al (2013) Effects of nutrient enrichment on seagrass population dynamics: evidence and synthesis from the biomass-density relationships. J Ecol 101:1552–1562. https://doi.org/10.1111/1365-2745.12134

    Article  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of earth’s nitrogen cycle. Science. 330:192–196. https://doi.org/10.1126/science.1186120

    CAS  Article  PubMed  Google Scholar 

  • Canty SWJ, Preziosi RF, Rowntree JK (2018) Dichotomy of mangrove management: a review of research and policy in the Mesoamerican reef region. Ocean Coast Manag 157:40–49. https://doi.org/10.1016/j.ocecoaman.2018.02.011

    Article  Google Scholar 

  • Chambers LG, Steinmuller HE, Breithaupt JL (2019) Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss. Ecology 100:1–15. https://doi.org/10.1002/ecy.2720

    Article  Google Scholar 

  • Chmura GL, Ainsfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cycles 17:1111–1123

    Google Scholar 

  • Congalton RG, Green K (2008) Assessing the accuracy of remotely sensed data: principles and practices, 2nd editio. CRC Press, Boca Raton

    Google Scholar 

  • Congedo L (2021) Semi-automatic classification plugin: a python tool for the download and processing of remote sensing images in QGIS. J Open Source Soft 6(64):3172. https://doi.org/10.21105/joss.03172

    Article  Google Scholar 

  • Cooper E, Burke L, Bood N (2009) Coastal Capital: Belize The economic contribution of Belize’s coral reefs and mangroves. World Resources Institute, Washington

    Google Scholar 

  • Dakos V, Matthews B, Hendry A et al (2018) Ecosystem tipping points in an evolving world. bioRxiv 197:463. https://doi.org/10.1101/447227

    Article  Google Scholar 

  • Deegan LA, Johnson DS, Warren RS et al (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490:388–392. https://doi.org/10.1038/nature11533

    CAS  Article  PubMed  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D et al (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297. https://doi.org/10.1038/ngeo1123

    CAS  Article  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    CAS  Google Scholar 

  • Ellis JC (2005) Marine birds on land: a review of plant biomass, species richness, and community composition in seabird colonies. Plant Ecol 181:227–241. https://doi.org/10.1007/s11258-005-7147-y

    Article  Google Scholar 

  • Ellison JC (1993) Mangrove retreat with rising sea-level, Bermuda. Estuar Coast Shelf Sci 37:75–87

    CAS  Google Scholar 

  • Ellison JC (2000) How South Pacific mangroves may respond to predicted climate change and sea-level rise. Climate change in the South Pacific: impacts and responses in Australia, New Zealand, and small island states. Springer, Dordrecht, pp 289–300

    Google Scholar 

  • Feller IC (1995) Effects of nutrient enrichment on growth and Herbivory of Dwarf Red Mangrove (Rhizophora mangle). Ecol Monogr 65:477–505

    Google Scholar 

  • Feller IC, Dangremond EM, Devlin DJ et al (2015) Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida, USA. Ecology 96:2960–2972. https://doi.org/10.1890/14-1853.1

    Article  PubMed  Google Scholar 

  • Feller IC, Lovelock CE, Berger U et al (2010) Biocomplexity in mangrove ecosystems. Ann Rev Mar Sci 2:395–417

    CAS  PubMed  Google Scholar 

  • Feller IC, Whigham DF, McKee KL, Lovelock CE (2003) Nitrogen limitation of growth and nutrient dynamics in a disturbed Mangrove Forest, Indian River Lagoon, Florida. Oecologia 134:405–414. https://doi.org/10.1007/s00442-002-

    Article  PubMed  Google Scholar 

  • Feller IC, Whigham DF, O’Neill JP, Mckee KL (1999) Effects of nutrient enrichment on within-stand cycling in a Mangrove forest. Ecology 80:2193–2205. https://doi.org/10.1890/0012-9658(1999)080[2193:EONEOW]2.0.CO;2

    Article  Google Scholar 

  • Fourqueen J, Johnson B, Kauffman JB, et al (2014) Field sampling of soil carbon pools in coastal ecosystems. Coast Blue Carbon Methods Assess carbon Stock Emiss factors mangroves tidal marshes seagrass meadows 39–66

  • Fromard F, Puig H, Mougin E et al (1998) Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia. 115: 39-53

  • Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle. Science. 320:889–892

    CAS  PubMed  Google Scholar 

  • Gardner TA, Côté IM, Gill JA et al (2005) Hurricanes and Caribbean coral reefs: impacts, recovery patterns, and role in long-term decline. Ecology 86:174–184. https://doi.org/10.1890/04-0141

    Article  Google Scholar 

  • Giblin AE, Nadelhoffer KJ, Shaver GR et al (1991) Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol Monogr 61:415–435

    Google Scholar 

  • Gilman E, Ellison J, Coleman R (2007) Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position. Environ Monit Assess 124:105–130. https://doi.org/10.1007/s10661-006-9212-y

    Article  PubMed  Google Scholar 

  • Gilman EL, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aquat Bot 89:237–250. https://doi.org/10.1016/j.aquabot.2007.12.009

    Article  Google Scholar 

  • Gischler E (2018) Marine research in the Belize atolls, glovers reef, lighthouse reef, and Turneffe islands since the pioneering work of David Stoddart: a review, In: Reefs in Space and time: recognizing David Stoddart’s contribution to Coral Reef Science, p 19

  • Goldberg L, Lagomasino D, Thomas N, Fatoyinbo L (2020) Global declines in human-driven mangrove loss. Glob Chang Biol 26:5844–5822

    PubMed  PubMed Central  Google Scholar 

  • Green EP, Clark CD, Mumby PJ et al (1998) Remote sensing techniques for mangrove mapping. Int J Remote Sens 19:935–956

    Google Scholar 

  • Grime JP (1979) Plant strageties and vegetation processes, 2nd edn. Wiley, England

    Google Scholar 

  • Guannel G, Arkema K, Ruggiero P, Verutes G (2016) The power of three: coral reefs, seagrasses and mangroves protect coastal regions and increase their resilience. PLoS One 11:1–22. https://doi.org/10.1371/journal.pone.0158094

    CAS  Article  Google Scholar 

  • Heumann BW (2011) Satellite remote sensing of mangrove forests: recent advances and future opportunities. Prog Phys Geogr 35:87–108

    Google Scholar 

  • Holguin G, Gonzalez-Zamorano P, de-Bashan LE et al (2006) Mangrove health in an arid environment encroached by urban development-a case study. Sci Total Environ 363:260–274. https://doi.org/10.1016/j.scitotenv.2005.05.026

    CAS  Article  PubMed  Google Scholar 

  • Hughes T, Baird AH, Bellwood DR et al (2003) Climate change, human impacts and the resilience of coral reefs. Sciencec 301:929–933

    CAS  Google Scholar 

  • Hutchings P, Saenger P (1987) Ecology of mangroves. Ecol mangroves 388pp

  • Ibharim NA, Mustapha MA, Lihan T, Mazlan AG (2015) Mapping mangrove changes in the Matang Mangrove Forest using multi temporal satellite images. Ocean Coast Manag 114:64–76

    Google Scholar 

  • Jensen JR (2015) Introductory digital image processing: a remote sensing perspective, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Kauffman JB, Adame MF, Arifanti VB et al (2020) Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol Monogr 90:1–18. https://doi.org/10.1002/ecm.1405

    Article  Google Scholar 

  • Kauffman JB, Donato DC (2012) Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Cent Int For Res. 86:40. https://doi.org/10.17528/cifor/003749

    Article  Google Scholar 

  • Kauffman JB, Heider C, Cole TG et al (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31:343–352. https://doi.org/10.1007/s13157-011-0148-9

    Article  Google Scholar 

  • Kjerfve B, Rutzler K, Kierspe GH (1982) Tides at Carrie Bow Cay, Belize. The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize, 1: structure and communities. Smithson Contrib Mar Sci 12:47–51

    Google Scholar 

  • Koltes KH, Opishinski TB (2009) Patterns of water quality and movement in the vicinity of Carrie Bow Cay, Belize. Smithson Contrib Mar Sci 38:379–390

    Google Scholar 

  • Koop K, Booth D, Broadbent A et al (2001) ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar Pollut Bull 42:91–120. https://doi.org/10.1016/S0025-326X(00)00181-8

    CAS  Article  PubMed  Google Scholar 

  • Kramer PA, Kramer PR (2002) In: McField M (ed) Ecoregional conservation planning for the Mesoamerican Caribbean Reef. World Wildlife Fed., Gland, Switzerland, p 140

    Google Scholar 

  • Krauss KW, McKee KL, Lovelock CE et al (2014) How mangrove forests adjust to rising sea level. New Phytol 202:19–34

    PubMed  Google Scholar 

  • Kuenzer C, Bluemel A, Gebhardt S et al (2011) Remote sensing of mangrove ecosystems: a review. Remote Sens 3:878–928

    Google Scholar 

  • Ledwin S (2010) Assessment of the ecological impacts of two shrimp farms in Southern Belize (Doctoral dissertation)

  • Lefebvre G, Poulin B (1996) Seasonal abundance of migrant birds and food resources in Panamanian Mangrove Forests, In: Gaëtan Lefebvre and Brigitte Poulin (Eds), The Wilson Bulletin, Wilson Ornithological So, Wilson Bull, 108: 748–759

  • Leonardi N, Ganju NK, Fagherazzi S (2016) A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proc Natl Acad Sci U S A 113:64–68. https://doi.org/10.1073/pnas.1510095112

    CAS  Article  PubMed  Google Scholar 

  • Lovelock CE, Ball MC, Martin KC, Feller IC (2009) Nutrient enrichment increases mortality of mangroves. PLoS One 4:4–7. https://doi.org/10.1371/journal.pone.0005600

    CAS  Article  Google Scholar 

  • Lovelock CE, Feller IC, McKee KL et al (2004) The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Funct Ecol 18:25–33

    Google Scholar 

  • Lugo AE (1989) Fringe wetlands. Forested Wetlands: ecosystems of the World, Elsevier, pp 143–169

  • Macintyre IG, Goodbody I, Rützler K et al (2000) A general biological and geological survey of the rims of ponds in the major mangrove islands of the Pelican Cays, Belize. Atoll Res Bull 467:13–44

    Google Scholar 

  • Macintyre IG, Littler MM, Littler DS (1995) Holocene history of Tobacco Range, Belize, Central America. Atoll Res Bull 430:1–18

    Google Scholar 

  • Macintyre IG, Toscano M, Lighty RG, Bond GB (2004) Holocene history of the mangrove islands of Twin Cays, Belize, Central America. Atoll Res Bull 510:1–15

    Google Scholar 

  • Macintyre IG, Toscano MA, Feller IC, Faust MA (2009) Decimating Mangrove forests for commercial development in the pelican cays, belize: long-term ecological loss for short-term gain? Smithson Contrib Mar Sci. 281-290

  • Mateo MA, Romero J, Perez M et al (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar Coast Shelf Sci. 44:103–110

    Google Scholar 

  • McFadden TN, Kauffman JB, Bhomia RK (2016) Effects of nesting waterbirds on nutrient levels in mangroves, Gulf of Fonseca, Honduras. Wetl Ecol Manag 24:217–229. https://doi.org/10.1007/s11273-016-9480-4

    CAS  Article  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556. https://doi.org/10.1111/j.1466-8238.2007.00317.x

    Article  Google Scholar 

  • McKee KL, Mendelssohn IA, Hester MW (1988) Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. Am J Bot 75:1352–1359

    Google Scholar 

  • McLeod E, Chmura GL, Bouillon S et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. https://doi.org/10.1890/110004

    Article  Google Scholar 

  • Mishra AK, Apte D (2020) Ecological connectivity with mangroves influences tropical seagrass population longevity and meadow traits within an island ecosystem. Mar Ecol Prog Ser. 644:47–63

    Google Scholar 

  • Moore JC (2018) Predicting tipping points in complex environmental systems. Proc Natl Acad Sci 115:635–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morisette JT, Privette JL, Strahler A et al (2005) Validation of global land-cover products by the Committee on Earth Observing Satellites. In: Luneta RL, Lyons JG (eds) Remote sensing and GIS accuracy assessment. CRC Press, Boca Raton, pp 36–46

    Google Scholar 

  • Mumby PJ (2006) Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biol Conserv 128:215–222

    Google Scholar 

  • Murray MR, Zisman SA, Furley PA et al (2003) The mangroves of Belize Part 1. distribution, composition and classification. For Ecol Manage 174:265–279. https://doi.org/10.1016/S0378-1127(02)00036-1

    Article  Google Scholar 

  • Nagelkerken I, Blaber SJM, Bouillon S et al (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89:155–185. https://doi.org/10.1016/j.aquabot.2007.12.007

    Article  Google Scholar 

  • Nagelkerken I, De Schryver AM, Verweij MC et al (2010) Differences in root architecture influence attraction of fishes to mangroves: a field experiment mimicking roots of different length, orientation, and complexity. J Exp Mar Bio Ecol 396:27–34

    Google Scholar 

  • Naidoo G (1983) Effects of flooding on leaf water potential and stomatal resistance in Bruguiera gymnorrhiza (L.) Lam. New Phytol 93:369–376

    Google Scholar 

  • Neilson EW, Lamb CT, Konkolics SM et al (2020) There’s a storm a-coming: ecological resilience and resistance to extreme weather events. Ecol Evol 10:12147–12156. https://doi.org/10.1002/ece3.6842

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen HH, Nghia NH, Nguyen HTT et al (2020) Classification methods for mapping mangrove extents and drivers of change in Thanh Hoa Province, Vietnam, during 2005–2018. For Soc 4:225–242

    Google Scholar 

  • Norris MD, Avis PG, Reich PB, Hobbie SE (2013) Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant Soil. 367:347–361

    CAS  Google Scholar 

  • Nowinski NS, Trumbore SE, Schuur EA et al (2008) Nutrient addition prompts rapid destabilization of organic matter in an arctic tundra ecosystem. Ecosystems 11:16–25

    CAS  Google Scholar 

  • Onuf CP, Teal JM, Valiela I (1977) Interactions of nutrients plant growth and Herbivory in a Mangrove. Ecosystem 58:514–526

    Google Scholar 

  • Pham TD, Yokoya N, Bui DT et al (2019) Remote sensing approaches for monitoring mangrove species, structure, and biomass: opportunities and challenges. Remote Sens 11:230

    Google Scholar 

  • Planet Team (2017) Planet application program interface: In space for life on earth. San Francisco, CA. https://www.api.planet.com

  • Puyravaud JP (2003) Standardizing the calculation of the annual rate of deforestation. For Ecol Manage 177:593–596

    Google Scholar 

  • Record S, Charney ND, Zakaria RM, Ellison AM (2013) Projecting global mangrove species and community distributions under climate change. Ecosphere 4:1–23. https://doi.org/10.1890/ES12-00296.1

    Article  Google Scholar 

  • Reddy KR, Delaune RD (2008) Biogeochemisty of Wetlands. CRC Press, Boca Raton

    Google Scholar 

  • Reef R, Feller IC, Lovelock CE (2010) Nutrition of mangroves. Tree Physiol 30:1148–1160

    CAS  PubMed  Google Scholar 

  • Rivas A, Gonzalez C, Canty SWJ et al (2020) Regional strategy for Mangrove Management, conservation, restoration and monitoring in the Mesoamerican Reef 2020–2025

  • Rivera-Monroy VH, Twilley RR (1996) The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico). Limnol Oceanogr 41:284–296

    CAS  Google Scholar 

  • Rogers A, Mumby PJ (2019) Mangroves reduce the vulnerability of coral reef fisheries to habitat degradation. PLoS ONE 17:1–12

    Google Scholar 

  • Ruetzler K (2004) Sponges on coral reefs: a community shaped by competitive cooperation. Boll Dei Musei Instituti Dell’universitá Di Genova 68:85–148

    Google Scholar 

  • Ruetzler K, Feller IC (1996) Caribbean mangrove swamps. Sci Am. 247:94–99

    Google Scholar 

  • Sabins FF, Ellis JM (2020) Remote sensing: Principles, interpretation, and applications, 4th edn. Waveland Press, Illinois

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D et al (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    PubMed  Google Scholar 

  • Serra P, Pons X, Saurí D (2003) Post-classification change detection with data from different sensors: Some accuracy considerations. Int J Remote Sens 24:3311–3340

    Google Scholar 

  • Simard M, Fatoyinbo L, Smetanka C et al (2019) Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat Geosci 12:40–45

    CAS  Google Scholar 

  • Spivak AC, Sanderman J, Bowen JL et al (2019) Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat Geosci 12:685–692

    CAS  Google Scholar 

  • Tilman D (1990) Constraints and Tradeoffs: toward a predictive theory of competition and succession. Oikos 58:3–15

    Google Scholar 

  • UNESCO (1996) Convention concerning the protection of the world cultural and natural heritage. Merida, Yucatan

    Google Scholar 

  • Ummenhofer CC, Meehl GA (2017) Extreme weather and climate events with ecological relevance: a review. Philos Trans R Soc B Biol Sci 372:1–15

    Google Scholar 

  • Veerendra TM, Latha BM (2014) Estimation of growth rate of Davanagere district using multispectral image using ENVI 4.7. Int J Sci Res 3:704–708

    Google Scholar 

  • Verhoeven JTA, Arheimer B, Yin C, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21:96–103. https://doi.org/10.1016/j.tree.2005.11.015

    Article  PubMed  Google Scholar 

  • Viennois G, Proisy C, Feret J-B et al (2016) Multitemporal analysis of high-spatial-resolution optical satellite imagery for mangrove species mapping in Bali, Indonesia. IEEE J Sel Top Appl Earth Obs Remote Sens 9:3680–3686

    Google Scholar 

  • Wells CE, Webb AW, Prouty CM et al (2019) Wastewater technopolitics on the southern coast of Belize. Econ Anthropol 6:277–290

    Google Scholar 

  • Whelan CJ, Wenny DG, Marquis RJ (2008) Ecosystem services provided by birds. Ann N Y Acad Sci 1134:25–60. https://doi.org/10.1196/annals.1439.003

    Article  PubMed  Google Scholar 

  • Wright IJ, Westoby M, Reich PB (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J Ecol 90:534–543

    Google Scholar 

  • Yates KK, Rogers CS, Herlan JJ et al (2014) Diverse coral communities in mangrove habitats suggest a novel refuge from climate change. Biogeosciences 11:4321–4337. https://doi.org/10.5194/bg-11-4321-2014

    Article  Google Scholar 

  • Young NE, Anderson RS, Chignell SM et al (2017) A survival guide to Landsat processing. Ecology 98:920–932

    PubMed  Google Scholar 

  • Young HS, McCauley DJ, Dunbar RB, Dirzo R (2010) Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc Natl Acad Sci U S A 107:2072–2077. https://doi.org/10.1073/pnas.0914169107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Toledo Institute for Development and Environment (TIDE) and Belize River Lodge for regional information. We would also like to thank the Belize Fisheries Department, Belize Forestry Department and the Mining Unit of the Ministry of Natural Resources for permits and unabridged access to mangrove cays. A special thanks to Z.R. Foltz and M.S. Jones for CCRE coordination. Thank you to N. Singh and M. Bell for laboratory assistance. Thank you to K.V. Curtis for sediment nutrient analysis and L. Linn for porewater analysis. This is Contribution No. 1053 of the Caribbean Coral Reef Ecosystems program, and contribution no. 1159 of the Smithsonian Marine Station.

Funding

This research was funded by The Summit Foundation.

Author information

Authors and Affiliations

Authors

Contributions

LTS, SWJC, JAC, MKS and ICF designed the study; LTS, SWJC, JRC and ICF performed the research; LTS and JRC analyzed the data; all authors contributed to the writing of the paper. JAC and ICF are co-senior authors.

Corresponding author

Correspondence to L. T. Simpson.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Seth Newsome.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simpson, L.T., Canty, S.W.J., Cissell, J.R. et al. Bird rookery nutrient over-enrichment as a potential accelerant of mangrove cay decline in Belize. Oecologia 197, 771–784 (2021). https://doi.org/10.1007/s00442-021-05056-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-021-05056-w

Keywords

  • Rookeries
  • Nutrient enrichment
  • Cay disappearance
  • C stocks
  • Global climate change