Skip to main content
Log in

Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes

  • Plant-microbe-animal interactions – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net “preference” for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Most of the data are provided in the supplementary material associated with the manuscript. Detailed data are available from the corresponding author upon reasonable request.

References

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK

    Google Scholar 

  • Anderson TR, Hessen DO, Boersma M, Urabe J, Mayor DJ (2017) Will invertebrates require increasingly carbon-rich food in a warming world? Am Nat 190:725–742

    PubMed  Google Scholar 

  • Anstett DN, Naujokaitis-Lewis I, Johnson MT (2014) Latitudinal gradients in herbivory on Oenothera biennis vary according to herbivore guild and specialization. Ecology 95:2915–2923

    Google Scholar 

  • Armas C, Ordiales R, Pugnaire FI (2004) Measuring plant interactions: a new comparative index. Ecology 85:2682–2686

    Google Scholar 

  • Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O (2018) Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284

    Google Scholar 

  • Bekkby T, Angeltveit G, Gundersen H, Tveiten L, Norderhaug KM (2015) Red sea urchins (Echinus esculentus) and water flow influence epiphytic macroalgae density. Mar Biol Res 11:375–384

    Google Scholar 

  • Bell TM, Sotka EE (2012) Local adaptation in adult feeding preference and juvenile performance in the generalist herbivore Idotea balthica. Oecologia 170:383–393

    PubMed  Google Scholar 

  • Bennett S, Wernberg T, de Bettignies T, Kendrick GA, Anderson RJ, Bolton JJ, Rodgers KL, Shears NT, Leclerc J-C, Lévêque L, Davoult D, Christie HC (2015a) Canopy interactions and physical stress gradients in subtidal communities. Ecol Lett 18:677–686

    PubMed  Google Scholar 

  • Bennett S, Wernberg T, Harvey ES, Santana-Garcon J, Saunders BJ (2015b) Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol Lett 18:714–723

    PubMed  Google Scholar 

  • Blanchet-Aurigny A, Guillou M, Pernet F, Gaffet J-D, Dubois SF (2012) Tissue-diet discrimination factors of isotopic ratios (∆δ13C and ∆δ15N) in two brittle star species: effect of reproductive state, diet and tissue composition. J Exp Mar Biol Ecol 426:68–77

    Google Scholar 

  • Boersma M, Mathew KA, Niehoff B, Schoo KL, Franco-Santos RM, Meunier CL (2016) Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it’s hot? Ecol Lett 19:45–53

    PubMed  Google Scholar 

  • Bonsdorff E, Vahl O (1982) Food preference of the sea urchins Echinus acutus and E. esculentus. Mar Behav Physiol 8:243–248

    Google Scholar 

  • Brey T, Müller-Wiegmann C, Zittier ZMC, Hagen W (2010) Body composition in aquatic organisms—a global data bank of relationships between mass, elemental composition and energy content. J Sea Res 64:334–340

    Google Scholar 

  • Bruno JF, Carr LA, O’Connor MI (2015) Exploring the role of temperature in the ocean through metabolic scaling. Ecology 96:3126–3140

    PubMed  Google Scholar 

  • Camps-Castellà J, Romero J, Prado P (2020) Trophic plasticity in the sea urchin Paracentrotus lividus, as a function of resource availability and habitat features. Mar Ecol Prog Ser 637:71–85

    Google Scholar 

  • Carreira B, Segurado P, Orizaola G, Gonçalves N, Pinto V, Laurila A, Rebelo R (2016) Warm vegetarians? Heat waves and diet shifts in tadpoles. Ecology 97:2964–2974

    CAS  PubMed  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C): the effects of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    CAS  Google Scholar 

  • Chase JM, Biro EG, Ryberg WA, Smith KG (2009) Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecol Lett 12:1210–1218

    PubMed  Google Scholar 

  • Christie H, Jørgensen NM, Norderhaug KM, Waage-Nielsen E (2003) Species distribution and habitat exploitation of fauna associated with kelp (Laminaria hyperborea) along the Norwegian coast. J Mar Biol Assoc UK 83:687–699

    Google Scholar 

  • Christie H, Gundersen H, Rinde E, Filbee-Dexter K, Norderhaug KM, Pedersen T, Bekkby T, Gitmark JK, Fagerli CW (2019) Can multitrophic interactions and ocean warming influence large-scale kelp recovery? Ecol Evol 9:2847–2862

    PubMed  PubMed Central  Google Scholar 

  • Clay NA, Lehrter RJ, Kaspari M (2017) Towards a geography of omnivory: omnivores increase carnivory when sodium is limiting. J Anim Ecol 86:1523–1531

    PubMed  Google Scholar 

  • Comely CA, Ansell AD (1988) Population density and growth of Echinus esculentus L. on the Scottish west coast. Estuar Coast Shelf Sci 27:311–334

    Google Scholar 

  • Croll SL, Watts SA (2004) The effect of temperature on feed consumption and nutrient absorption in Procambarus clarkii and Procambarus zonangulus. J World Aquaculture Soc 35:478–488

    Google Scholar 

  • Dell AI, Pawar S, Savage VM (2014) Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J Anim Ecol 83:70–84

    PubMed  Google Scholar 

  • Demko AM, Amsler CD, Hay ME, Long JD, McClintock JB, Paul VJ, Sotka EE (2017) Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity. Ecology 98:2312–2321

    PubMed  Google Scholar 

  • Dethier MN, Graham ES, Cohen S, Tear LM (1993) Visual versus random-point percent cover estimations:‘objective’is not always better. Mar Ecol Prog Ser 96:93–100

    Google Scholar 

  • Emson RH, Moore PG (1998) Diet and gonad size in three populations of Echinus esculentus. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, pp 641–644

    Google Scholar 

  • Fernandez C, Boudouresque C-F (2000) Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food. Mar Ecol Prog Ser 204:131–141

    CAS  Google Scholar 

  • Filbee-Dexter K, Wernberg T, Norderhaug KM, Ramirez-Llodra E, Pedersen MF (2018) Movement of pulsed resource subsidies from kelp forests to deep fjords. Oecologia 1987:291–304

    Google Scholar 

  • Filbee-Dexter K, Pedersen MF, Fredriksen S, Norderhaug KM, Rinde E, Kristiansen T, Albretsen J, Wernberg T (2020) Carbon export is facilitated by sea urchins transforming kelp detritus. Oecologia 192:213–225

    PubMed  Google Scholar 

  • Fletcher D, Underwood A (2002) How to cope with negative estimates of components of variance in ecological field studies. J Exp Mar Biol Ecol 273:89–95

    Google Scholar 

  • Fredriksen S (2003) Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis. Mar Ecol Prog Ser 260:71–81

    CAS  Google Scholar 

  • Freestone AL, Osman RW, Ruiz GM, Torchin ME (2011) Stronger predation in the tropics shapes species richness patterns in marine communities. Ecology 92:983–993

    PubMed  Google Scholar 

  • Gilljam D, Curtsdotter A, Ebenman B (2015) Adaptive rewiring aggravates the effects of species loss in ecosystems. Nat Commun 6:8412

    CAS  PubMed  Google Scholar 

  • Guiry MD, Blunden G (1991) Seaweed resources in Europe: uses and potential. Wiley, Chichester

  • Hagen NT (1983) Destructuve grazing of kelp beds by sea urchins in Vestfjorden, Northern Norway. Sarsia 68:177–190

    Google Scholar 

  • Jones NS, Kain JM (1967) Subtidal algal colonization following the removal of Echinus. Helgol Mar Res 15:460–466

    Google Scholar 

  • Kain JM (1963) Aspects of the Biology of Laminaria hyperborea II. Age, weight and length. J Mar Biol Assoc UK 43:129–151

    Google Scholar 

  • Kain-Jones JM (1971) Synopsis of biological data on Laminaria hyperborea. FAO Fisheries synopsis, p 87

    Google Scholar 

  • Kelly MS, Owen PV, Pantazis P (2001) The commercial potential of the common sea urchin Echinus esculentus from the west coast of Scotland. Hydrobiologia 465:85–94

    Google Scholar 

  • Kortsch S, Primicerio R, Aschan M, Lind S, Dolgov AV, Planque B (2019) Food-web structure varies along environmental gradients in a high-latitude marine ecosystem. Ecography 42:295–308

    Google Scholar 

  • Lares MT, McClintock JB (1991) The effects of food quality and temperature on the nutrition of the carnivorous sea urchin Eucidaris tribuloides (Lamarck). J Exp Mar Biol Ecol 149:279–286

    Google Scholar 

  • Leclerc J-C, Riera P, Leroux C, Lévêque L, Davoult D (2013) Temporal variation in organic matter supply in kelp forests: linking structure to trophic functioning. Mar Ecol Prog Ser 494:87–105

    CAS  Google Scholar 

  • Leclerc J-C, Riera P, Laurans M, Leroux C, Lévêque L, Davoult D (2015) Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests. Estuar Coast Shelf Sci 152:11–22

    CAS  Google Scholar 

  • Leclerc J-C, Riera P, Lévêque L, Davoult D (2016) Contrasting temporal variation in habitat complexity and species abundance distributions in four kelp forest strata. Hydrobiologia 777:33–54

    Google Scholar 

  • Lee KP, Jang T, Ravzanaadii N, Rho MS (2015) Macronutrient balance modulates the temperature-size rule in an ectotherm. Am Nat 186:212–222

    PubMed  Google Scholar 

  • Lemoine NP, Drews WA, Burkepile DE, Parker JD (2013) Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122:1669–1678

    Google Scholar 

  • Minor MA, Scheibling RE (1997) Effects of food ration and feeding regime on growth and reproduction of the sea urchin Strongylocentrotus droebachiensis. Mar Biol 129:159–167

    Google Scholar 

  • Miyasaka H, Genkai-Kato M (2009) Shift between carnivory and omnivory in stream stonefly predators. Ecol Res 24:11–19

    Google Scholar 

  • Moore HB (1934) A comparison of the biology of Echinus esculentus in different habitats. J Mar Biol Assoc UK 19:869–885

    Google Scholar 

  • Nichols D, Bishop GM, Sime AAT (1985) Reproductive and nutritional periodicities in populations of the European sea-urchin, Echinus Esculentus (Echinodermata: Echinoidea) from the English Channel. J Mar Biol Assoc UK 65:203–220

    Google Scholar 

  • Norderhaug KM (2004) Use of red algae as hosts by kelp-associated amphipods. Mar Biol 144:225–230

    Google Scholar 

  • Norderhaug KM, Christie H, Fossa JH, Fredriksen S (2005) Fish-macrofauna interactions in a kelp (Laminaria hyperborea) forest. J Mar Biol Assoc UK 85:1279–1286

    Google Scholar 

  • Norderhaug KM, Christie H, Rinde E, Gundersen H, Bekkby T (2014) Importance of wave and current exposure to fauna communities in Laminaria hyperborea kelp forests. Mar Ecol Prog Ser 502:295–301

    Google Scholar 

  • Paul D, Skrzypek G, Fórizs I (2007) Normalization of measured stable isotopic compositions to isotope reference scales–a review. Rapid Commun Mass Spectrom 21:3006–3014

    CAS  PubMed  Google Scholar 

  • Pennings SC, Silliman BR (2005) Linking biogeography and community ecology: latitudinal variation in plant–herbivore interaction strength. Ecology 86:2310–2319

    Google Scholar 

  • Pinnegar JK, Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic structure. Funct Ecol 13:225–231

    Google Scholar 

  • Post D (2002) Using stable isotopes to estimate trophic positions: models, methods, and assumptions. Ecology 83:703–718

    Google Scholar 

  • Rho MS, Lee KP (2017) Temperature-driven plasticity in nutrient use and preference in an ectotherm. Oecologia 185:401–413

    PubMed  Google Scholar 

  • Rosenblatt AE, Schmitz OJ (2016) Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol Evol 31:965–975

    PubMed  Google Scholar 

  • Roslin T, Hardwick B, Novotny V, Petry WK, Andrew NR, Asmus A, Barrio IC, Basset Y, Boesing AL, Bonebrake TC, Cameron EK, Dáttilo W, Donoso DA, Drozd P, Gray CL, Hik DS, Hill SJ, Hopkins T, Huang S, Koane B, Laird-Hopkins B, Laukkanen L, Lewis OT, Milne S, Mwesige I, Nakamura A, Nell CS, Nichols E, Prokurat A, Sam K, Schmidt NM, Slade A, Slade V, Suchanková A, Teder T, van Nouhuys S, Vandvik V, Weissflog A, Zhukovich V, Slade EM (2017) Higher predation risk for insect prey at low latitudes and elevations. Science 356:742–744

    CAS  PubMed  Google Scholar 

  • Schaal G, Riera P, Leroux C (2010) Trophic ecology in a Northern Brittany (Batz Island, France) kelp (Laminaria digitata) forest, as investigated through stable isotope and chemical assays. J Sea Res 63:24–35

    CAS  Google Scholar 

  • Schmitz OJ, Rosenblatt AE, Smylie M (2016) Temperature dependence of predation stress and the nutritional ecology of a generalist herbivore. Ecology 97:3119–3130

    PubMed  Google Scholar 

  • Sentis A, Hemptinne JL, Brodeur J (2014) Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure. Ecol Lett 17:785–793

    PubMed  Google Scholar 

  • Sperfeld E, Wagner ND, Halvorson HM, Malishev M, Raubenheimer D (2017) Bridging ecological stoichiometry and nutritional geometry with homeostasis concepts and integrative models of organism nutrition. Funct Ecol 31:286–296

    Google Scholar 

  • Steen H, Moy FE, Bodvin T, Husa V (2016) Regrowth after kelp harvesting in Nord-Trøndelag, Norway. ICES J Mar Sci 73:2708–2720

    Google Scholar 

  • Steneck R, Watling L (1982) Feeding capabilities and limitations of herbivorous molluscs: a functional group approach. Mar Biol 68:299–319

    Google Scholar 

  • Teagle H, Smale DA (2018) Climate-driven substitution of habitat-forming species leads to reduced biodiversity within a temperate marine community. Divers Distrib 24:1367–1380

    Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281

    Google Scholar 

  • Tyler P, Young CM, Serafy K (1995) Distribution, diet and reproduction in the genus Echinus: evidence for recent diversification? In: Emson RH, Smith AB, Campbell AC (eds) Echinoderm research 1995. Balkema, Rotterdam, pp 29–38

    Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Vanderklift MA, Kendrick GA, Smit AJ (2006) Differences in trophic position among sympatric sea urchin species. Estuar Coast Shelf Sci 66:291–297

    Google Scholar 

  • Vergés A, McCosker E, Mayer-Pinto M, Coleman MA, Wernberg T, Ainsworth T, Steinberg PD (2019) Tropicalisation of temperate reefs: implications for ecosystem functions and management actions. Funct Ecol 33:1000–1013

    Google Scholar 

  • Wernberg T, Thomsen MS, Tuya F, Kendrick GA, Staehr PA, Toohey BD (2010) Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol Lett 13:685–694

    PubMed  Google Scholar 

  • Wernberg T, Krumhansl KA, Filbee-Dexter K, Pedersen MF (2019) Status and trends for the world’s kelp forests. In: Charles S (ed) World Seas: an environmental evaluation, vol volume III: ecological issues and environmental impacts, 2nd edn. Elsevier, pp 57–78

    Google Scholar 

  • Whalen MA, Whippo RDB, Stachowicz JJ, York PH, Aiello E, Alcoverro T, Altieri AH, Benedetti-Cecchi L, Bertolini C, Bresch M, Bulleri F, Carnell PE, Cimon S, Connolly RM, Cusson M, Diskin MS, D’Souza E, Flores AAV, Fodrie FJ, Galloway AWE, Gaskins LC, Graham OJ, Hanley TC, Henderson CJ, Hereu CM, Hessing-Lewis M, Hovel KA, Hughes BB, Hughes AR, Hultgren KM, Jänes H, Janiak DS, Johnston LN, Jorgensen P, Kelaher BP, Kruschel C, Lanham BS, Lee K-S, Lefcheck JS, Lozano-Álvarez E, Macreadie PI, Monteith ZL, O’Connor NE, Olds AD, O’Leary JK, Patrick CJ, Pino O, Poore AGB, Rasheed MA, Raymond WW, Reiss K, Rhoades OK, Robinson MT, Ross PG, Rossi F, Schlacher TA, Seemann J, Silliman BR, Smee DL, Thiel M, Unsworth RKF, van Tussenbroek BI, Vergés A, Yeager ME, Yednock BK, Ziegler SL, Duffy JE (2020) Climate drives the geography of marine consumption by changing predator communities. Proc Nat Acad Sci 117(45):28160–28166. https://doi.org/10.1073/pnas.2005255117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the people who assisted with diving and logistics at the different localities: L. Lévêque, Y. Fontana, M. Camusat, W. Thomas, N. Guidal and F. Le Ven in Roscoff (Marine operations staff, SBR), N. L. Frisk in Tromsø (Roskilde University, KELPEX). We are grateful to M. Thiel and two anonymous reviewers, whose comments helped substantially to improve the manuscript. JCL further thanks the Centre IDEAL (Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes, Universidad Austral de Chile) for kind hospitality over the manuscript preparation.

Funding

Funding for this work was provided by the Australian Research Council (TW: FT110100174, TW, KFD: DP190100058), the University of Western Australia Research Collaboration Awards (TW, TdB, JCL, DD, JNF, HC), the France-Australia Science Innovation Collaboration 2014 program (TdB, TW, JCL, DD), Metabomer and Corsaire Core Facility (CL), the French Government run by the National Research Agency with regards to the investment expenditure programme IDEALG ANR-10-BTBR-04 (JCL, DD) and the Norwegian Research Council (TW, MFP, KFD, KELPEX 255085/E40).

Author information

Authors and Affiliations

Authors

Contributions

JCL, TW and TdB conceived the ideas and designed the study. TW and TdB obtained the initial funding. JCL, TdB, TW, HC, JF and KFD collected and processed samples during field campaigns. CL processed isotope samples and JCL and FdB analysed the sea urchin guts. JCL analysed the data and led the writing. All authors contributed critically to manuscript drafts and discussion.

Corresponding author

Correspondence to Jean-Charles Leclerc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by James Fourqurean.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 594 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclerc, JC., de Bettignies, T., de Bettignies, F. et al. Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes. Oecologia 196, 441–453 (2021). https://doi.org/10.1007/s00442-021-04936-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-021-04936-5

Keywords

Navigation