Introduced ecological engineers drive behavioral changes of grasshoppers, consequently linking to its abundance in two grassland plant communities

Abstract

Introduced ecosystem engineers are expected to have extensive ecological impacts on a broad range of resident biota by altering the physical–chemical structure of ecosystems. Livestock that are potentially important introduced ecosystem engineers in grassland systems could create and/or modify habitats for native plant-dwelling insects. Yet, there is little knowledge of how insects respond to engineering effects of introduced livestock. To bridge this gap, we tested how domestic sheep affects the behavior and abundance of a native grasshopper Euchorthippus unicolor at both low (11.8 ± 0.4 plant species per plot) and high (19.8 ± 0.5 plant species per plot) diversity sites. Results found grasshoppers shifted their resting and feeding locations from the upper to the intermediate or low layers of vegetation, and fed on more plants species following livestock engineering effects. In the low plant diversity habitats, grazing caused grasshoppers to increase switching frequency, spend more time searching for host plants, and reduce time spent feeding, but had opposite effects on all the three behaviors in the high-diversity habitats. Moreover, grazing engineering effects on behavioral changes of grasshoppers were potentially related to their abundance. Overall, this study highlights native insect species’ behavior and abundance in responses to introduced ecological engineers, and suggests that ecosystem engineers of non-native species have strong and important impacts extending beyond their often most obvious and frequently documented direct ecological effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allan E, Bossdorf O, Dormann CF et al (2014) Interannual variation in land-use intensity enhances grassland multidiversity. Proc Natl Acad Sci 111:308–313. https://doi.org/10.1073/pnas.1312213111

    CAS  Article  PubMed  Google Scholar 

  2. Allred BW, Fuhlendorf SD, Hovick TJ et al (2013) Conservation implications of native and introduced ungulates in a changing climate. Glob Change Biol 19:1875–1883. https://doi.org/10.1111/gcb.12183

    Article  Google Scholar 

  3. Bakker E, Ritchie ME, Olff H et al (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9:780–788. https://doi.org/10.1111/j.1461-0248.2006.00925.x

    Article  PubMed  Google Scholar 

  4. Barry JM, Elbroch LM, Aiello-Lammens ME et al (2019) Pumas as ecosystem engineers: ungulate carcasses support beetle assemblages in the Greater Yellostone Ecosystem. Oecologia 189:577–586. https://doi.org/10.1007/s00442-018-4315-z

    Article  PubMed  Google Scholar 

  5. Barton BT, Beckerman AP, Schmitz OJ (2009) Climate warming strengthens indirect interactions in an old-field food web. Ecology 90:2346–2351. https://doi.org/10.1890/08-2254.1

    Article  PubMed  Google Scholar 

  6. Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296:904–907. https://doi.org/10.1126/science.1069349

    CAS  Article  PubMed  Google Scholar 

  7. Clissold FJ, Coggan N, Simpson SJ (2013) Insect herbivores can choose microclimates to achieve nutritional homeostasis. J Exp Biol 26:2089–2096. https://doi.org/10.1242/jeb.078782

    Article  Google Scholar 

  8. Coggan NV, Hayward MW, Gibb H (2018) A global database and “state of the field” review of research into ecosystem engineering by land animals. J Anim Ecol 87:974–994. https://doi.org/10.1111/1365-2656.12819

    Article  PubMed  Google Scholar 

  9. Collins SL, Calabrese LB (2012) Effects of fire, grazing and topographic variation on vegetation structure in tallgrass prairie. J Veg Sci 23:563–575. https://doi.org/10.1111/j.1654-1103.2011.01369.x

    Article  Google Scholar 

  10. Collins SL, Xia Y (2015) Long-term dynamics and hotspots of change in a desert grassland plant community. Am Nat 185:E30–E43. https://doi.org/10.1086/679315

    Article  PubMed  Google Scholar 

  11. Crook JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166. https://doi.org/10.1034/j.1600-0706.2002.970201.x

    Article  Google Scholar 

  12. Davidson AD, Ponce E, Lightfoot DC et al (2010) Rapid response of a grassland ecosystem to an experimental manipulation of a keystone rodent and domestic livestock. Ecology 91:3189–3200. https://doi.org/10.1890/09-1277.1

    Article  PubMed  Google Scholar 

  13. Ebeling A, Allan E, Heimann J et al (2013) The impact of plant diversity and fertilization on fitness of a generalist grasshopper. Basic Appl Ecol 14:246–254. https://doi.org/10.1016/j.baae.2013.01.006

    Article  Google Scholar 

  14. Eldridge DJ, Delgado-Baquerizo M, Woodhouse JN et al (2016) Mammalian engineers drive soil microbial communities and ecosystem functions across a disturbance gradient. J Anim Ecol 85:1636–1646. https://doi.org/10.1111/1365-2656.12574

    Article  PubMed  Google Scholar 

  15. Feit B, Dempster T, Jessop TS et al (2020) A trophic cascade initiated by an invasive vertebrate alters the structure of native reptile communities. Glob Change Biol 26:2829–2840. https://doi.org/10.1111/gcb.15032

    Article  Google Scholar 

  16. Filazzola A, Brown C, Dettlaff MA et al (2020) The effects of livestock grazing on biodiversity are multitrophic: a meta-analysis. Ecol Lett 23:1298–1309. https://doi.org/10.1111/ele.13527

    Article  PubMed  Google Scholar 

  17. Foresman A (2018) On the role of sex difference for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers. Philos Trans R Soc B 373:20170429. https://doi.org/10.1098/rstb.2017.0429

    Article  Google Scholar 

  18. Gardiner T (2018) Grazing and Orthoptera: a review. J Orthop Res 27:3–11. https://doi.org/10.3897/jor.27.26327

    Article  Google Scholar 

  19. Grether GF, Peiman KS, Tobias JA et al (2017) Causes and consequences of behavioral interference between species. Trends Ecol Evol 32:760–772. https://doi.org/10.1016/j.tree.2017.07.004

    Article  PubMed  Google Scholar 

  20. Gribben PE, Byers JE, Clements M et al (2009) Behavioural interactions between ecosystem engineers control community species richness. Ecol Lett 12:127–1136. https://doi.org/10.1111/j.1461-0248.2009.01366.x

    Article  Google Scholar 

  21. Griffen BD, Riley ME, Cannizzo ZJ et al (2017) Indirect effects of ecosystem engineering combine with consumer behavior to determine the spatial distribution of herbivory. J Anim Ecol 86:1425–1433. https://doi.org/10.1111/1365-2656.12730

    Article  PubMed  Google Scholar 

  22. Guy-Haim T, Lyons DA, Kotta J et al (2018) Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: a global review and meta-analysis. Glob Change Biol 24:906–924. https://doi.org/10.1111/gcb.14007

    Article  Google Scholar 

  23. Haram LE, Kinney KA, Sotka EE et al (2018) Mixed effects of an introduced ecosystem engineer on the foraging behavior and habitat selection of predators. Ecology 99:2751–2762. https://doi.org/10.1002/ecy.2495

    Article  PubMed  Google Scholar 

  24. Harrison JF, Fewell JH (1995) Thermal effects on feeding behavior and net energy-intake in a grasshopper experiencing large diurnal fluctuations in body temperature. Physiol Zool 68:453–473. https://doi.org/10.1086/physzool.68.3.30163779

    Article  Google Scholar 

  25. Hastings A, Byers JE, Crook JA et al (2007) Ecosystem engineering in space and time. Ecol Lett 10:153–164. https://doi.org/10.1111/j.1461-0248.2006.00997.x

    Article  PubMed  Google Scholar 

  26. Hope A, Picozzi N, Catt DC, Moss R (1996) Effects of reducing sheep grazing in the Scottish Highlands. J Range Manage 49:301–310. https://doi.org/10.2307/4002587

    Article  Google Scholar 

  27. Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. Am Nat 161:357–366. https://doi.org/10.1086/346135

    Article  PubMed  Google Scholar 

  28. Huntzinger M, Karban R, Cushman JH (2008) Negative effects of vertebrate herbivores on invertebrates in a coastal dune community. Ecology 89:1972–1980. https://doi.org/10.1890/07-0834.1

    Article  PubMed  Google Scholar 

  29. Ibanez S, Manneville O, Miquel C et al (2013) Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers. Oecologia 173:1459–1470. https://doi.org/10.1007/s00442-013-2738-0

    Article  PubMed  Google Scholar 

  30. Jonas JL, Joern A (2007) Grasshopper (Orthoptera: Acrididae) communities respond to fire, bison grazing and weather in North American tallgrass prairie: a long-term study. Oecologia 153:699–711. https://doi.org/10.1007/s00442-007-0761-8

    Article  PubMed  Google Scholar 

  31. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. https://doi.org/10.1007/978-1-4612-4018-1_14

    Article  Google Scholar 

  32. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957. https://doi.org/10.1890/0012-9658

    Article  Google Scholar 

  33. Kati V, Zografou K, Tzirkalli E et al (2012) Butterfly and grasshopper diversity patterns in humid Mediterranean grasslands: the roles of disturbance and environmental factors. J Insect Conserv 16:807–818. https://doi.org/10.1007/s10841-012-9467-2

    Article  Google Scholar 

  34. Knapp AK, Blair JM, Briggs JM et al (1999) The keystone role of bison in North American tallgrass prairie. Bioscience 49:39–50. https://doi.org/10.1525/bisi.1999.49.1.39

    Article  Google Scholar 

  35. Knolhoff LM, Heckel DG (2014) Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Ann Rev Entomol 59:263–278. https://doi.org/10.1146/annurev-ento-011613-161945

    CAS  Article  Google Scholar 

  36. Korösi A, Batáry P, Orosz A et al (2012) Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary. Insect Conserv Diver 5:57–66. https://doi.org/10.1111/j.1752-4598.2011.00153.x

    Article  Google Scholar 

  37. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw. 69:1–33. https://doi.org/10.18637/jss.v069.i01

    Article  Google Scholar 

  38. Lightfoot DC (2018) The effects of livestock grazing and climate variation on vegetation and grasshopper communities in the northern Chihuahuan Desert. J Orthop Res 27:35–51. https://doi.org/10.3897/jor.27.19945

    Article  Google Scholar 

  39. Liu J, Feng C, Wang D et al (2015) Impacts of grazing by different large herbivores in grassland depend on plant species diversity. J Appl Ecol 52:1053–1062. https://doi.org/10.1111/1365-2664.12456

    Article  Google Scholar 

  40. Long RA, Wambua A, Goheen JR et al (2017) Climatic variation modulates the indirect effects of large herbivores on small-mammal habitat use. J Anim Ecol 86:739–748. https://doi.org/10.1111/1365-2656.12669

    Article  PubMed  Google Scholar 

  41. Moreau G, Quiring DT, Eveleigh ES et al (2003) Advantages of a mixed diet: feeding on several foliar age classes increases the performance of a specialist insect herbivore. Oecologia 135:391–399. https://doi.org/10.1007/s00442-003-1213-8

    Article  PubMed  Google Scholar 

  42. Pfisterer AB, Diemer M, Schmid B (2003) Dietary shift and lowered biomass gain of a generalist herbivore in species-poor experimental plant communities. Oecologia 135:234–241. https://doi.org/10.1007/s00442-002-1169-0

    Article  PubMed  Google Scholar 

  43. Pinheiro J, Bates DM, DebRoy SS et al (2018) Nlme: linear and nonlinear mixed effects models. R package version 3.1

  44. Pitt WC (1999) Effects of multiple vertebrate predators on grasshopper habitat selection: trade-offs due to predation risk, foraging, and thermoregulation. Evol Ecol 13:499–515. https://doi.org/10.1023/A:1006792726166

    Article  Google Scholar 

  45. Ren B (2001) Grasshoppers and locusts from northeast in China. Jilin Science and Technology Press, Changchun

    Google Scholar 

  46. Rode M, Lemoine NP, Smith MD (2017) Prospective evidence for independent nitrogen and phosphorus limitation of grasshopper (Chorthippus curtipennis) growth in a tallgrass prairie. PLoS ONE 12(5):e0177754. https://doi.org/10.1371/journal.pone

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Romero GQ, Gonçakves-Souza T, Vieira C et al (2015) Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis. Biol Rev 90:877–890. https://doi.org/10.1111/brv.12138

    Article  PubMed  Google Scholar 

  48. Ross CE, McIntyre S, Barton PS et al (2020) A reintroduced ecosystem engineer provides a germination niche for native plant species. Biodivers Conserv 29:817–837. https://doi.org/10.1007/s10531-019-01911-8

    Article  Google Scholar 

  49. Sanders D, van Veen FJF (2011) Ecosystem engineering and predation: the multi-trophic impact of two ant species. J Anim Ecol 80:569–576. https://doi.org/10.1111/j.1365-2656.2010.01796.x

    Article  PubMed  Google Scholar 

  50. Schmitz O (2008) Herbivory from individuals to ecosystems. Ann Rev Ecol Evol Syst 39:133–152. https://doi.org/10.1146/annurev.ecolsys.39.110707.173418

    Article  Google Scholar 

  51. Schmitz OJ, Grabowski JH, Peckarsky, et al (2008) From individuals to ecosystem function: toward an integration of evolutionary and ecosystem ecology. Ecology 89:2436–2445. https://doi.org/10.1890/07-1030.1

    Article  PubMed  Google Scholar 

  52. Shi A (2013) Understanding variation in behavioral responses to human-induced rapid environmental change: a conceptual overview. Anim Behav 85:1077–1088. https://doi.org/10.1016/j.anbehav.2013.02.017

    Article  Google Scholar 

  53. Snell-Rood EC (2013) An overview of the evolutionary causes and consequences of behavioral plasticity. Anim Behavior 85:1004–1011. https://doi.org/10.1016/j.anbehav.2012.12.031

    Article  Google Scholar 

  54. Song Z, Feldman MW (2013) Adaptive foraging behavior of individual pollinators and the coexistence of co-flowering plants. Proc R Soc B 281:20132437. https://doi.org/10.1098/rspb.2013.2437

    Article  PubMed  Google Scholar 

  55. Steffen-Dewenter I, Tscharntke T (2002) Insect communities and biotic interactions on fragmented calcareous grasslands—a mini review. Biol Conserv 104:275–284. https://doi.org/10.1016/S0006-3207(01)00192-6

    Article  Google Scholar 

  56. Suttie JM, Reynolds SG, Batello C (2005) Grasslands of the world, vol 34. FAO, plant production and protection series. Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  57. Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans R Soc B 365:2853–2867. https://doi.org/10.1098/rstb.2010.0134

    Article  Google Scholar 

  58. Valdovinos FS, Ramos-Jiliberto R, Garay-Narváez L et al (2010) Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecol Lett 13:1546–1559. https://doi.org/10.1111/j.1461-0248.2010.01535.x

    Article  Google Scholar 

  59. Van der Plas F, Olff H (2014) Mesoherbivores affect grasshopper communities in a megaherbivore-dominated South African Savannah. Oecologia 175:639–649. https://doi.org/10.1007/s00442-014-2920-z

    Article  PubMed  Google Scholar 

  60. Waldram MS, Bond WJ, Stock WD (2008) Ecological engineering by a mega-grazer: white rhimo impacts on a South African Savanna. Ecosystems 11:101–112. https://doi.org/10.1007/s10021-007-9109-9

    Article  Google Scholar 

  61. Wang L, Wang D, Liu J et al (2011) Diet selection variation of a large herbivore in a feeding experiment with increasing species numbers and different plant functional group combinations. Acta Oecol 37:263–268. https://doi.org/10.1016/j.actao.2011.02.010

    CAS  Article  Google Scholar 

  62. Wang D, Du J, Zhang B et al (2017) Grazing intensity and phenotypic plasticity in the clonal grass Leymus chinensis. Rangel Ecol Manag 70:740–747. https://doi.org/10.1016/j.rama.2017.06.011

    Article  Google Scholar 

  63. Wang L, Delgado-Baquerizo M, Wang D et al (2019) Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc Nat Acad Sci 116:6187–6192. https://doi.org/10.1073/pnas.1807354116

    CAS  Article  PubMed  Google Scholar 

  64. Welti EAR, Qiu F, Tetreault HM et al (2019) Fire, grazing and climate shape plant-grasshopper interactions in a tallgrass prairie. Funct Ecol 33:735–745. https://doi.org/10.1111/1365-2435.13272

    Article  Google Scholar 

  65. Wetzel WC, Screen RM, Li I et al (2016) Ecosystem engineering by a gall-forming wasp indirectly suppresses diversity and density of herbivores on oak trees. Ecology 97:427–438. https://doi.org/10.1890/15-1347.1

    Article  PubMed  Google Scholar 

  66. Woodcock BA, Pywell RF, Roy DB et al (2005) Grazing management of calcareous grasslands and its implications for the conservation of beetle communities. Biol Conserv 125:193–202. https://doi.org/10.1016/j.biocon.2005.03.017

    Article  Google Scholar 

  67. Woodcock BA, Potts SG, Westbury DB et al (2007) The importance of sward architectural complexity in structuring predatory and phytophagous invertebrate assemblages. Ecol Entomol 32:302–311. https://doi.org/10.1111/j.1365-2311.2007.00869.x

    Article  Google Scholar 

  68. Wright JT, Gribben PE (2017) Disturbance-mediated facilitation by an intertidal ecosystem engineer. Ecology 98:2425–2436. https://doi.org/10.1002/ecy.1932

    Article  PubMed  Google Scholar 

  69. Zhong ZW, Wang D, Zhu H et al (2014) Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity. Ecology 95:1055–1064. https://doi.org/10.1890/13-1079.1

    Article  PubMed  Google Scholar 

  70. Zhong ZW, Li X, Pearson D et al (2017) Ecosystem engineering strengths bottom-up and weakens top-down effects via trait-mediated indirect interactions. Proc R Soc B 284:20170475. https://doi.org/10.1098/rspb.2017.0894

    Article  Google Scholar 

  71. Zhu H, Wang D, Wang L et al (2014) Effects of altered precipitation on insect community composition and structure in a meadow steppe. Ecol Entomol 39:453–461. https://doi.org/10.1111/een.12120

    Article  Google Scholar 

  72. Zhu H, Wang D, Guo Q et al (2015) Interactive effects of large herbivores and plant diversity on insect abundance in a meadow steppe in China. Agr Ecosyst Environ 212:245–252. https://doi.org/10.1016/j.agee.2015.07.008

    Article  Google Scholar 

  73. Zhu H, Qu Y, Zhang D et al (2017) Impacts of grazing intensity and increased precipitation on a grasshopper assemblage (Orthoptera: Acrididae) in a meadow steppe. Ecol Entomol 42:458–468. https://doi.org/10.1111/een.12403

    Article  Google Scholar 

  74. Zhu Y, Zhong Z, Pagès JF et al (2019) Negative effects of vertebrate on invertebrate herbivores mediated by enhanced plant nitrogen content. J Ecol 107:901–912. https://doi.org/10.1111/1365-2745.13100

    Article  Google Scholar 

  75. Zhu H, Li H, Yang ZM et al (2020a) Intensive grazing enhances grasshopper fitness and abundance in a meadow steppe. Agric Ecosyst Environ 300:107012. https://doi.org/10.1016/j.agee.2020.107012

    Article  Google Scholar 

  76. Zhu H, Nkurunziza V, Wang J et al (2020b) Effects of large herbivore grazing on grasshopper behavior and abundance in a meadow steppe. Ecol Entomol. https://doi.org/10.1111/een.12919

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Kathryn Ingerslew for her help in revising an early draft, and Hang Ruan for suggestion in figures. This project was supported by National Natural Science Foundation of China (31770520; 32061143027), National Key Research and Development Program of China (2016YFC0500602), Program for Introducing Talents to Universities (B16011), the Program for Innovative Research Team in University (IRT-16R11), and the Fundamental Research Funds for the Central Universities (2412019FZ029).

Author information

Affiliations

Authors

Contributions

DW, VN, and HZ designed the experiments, VN and JW collected the data, HZ analyzed the data, DW, HZ, and NAB wrote the manuscript, and all authors contributed substantially to revisions.

Corresponding author

Correspondence to Hui Zhu.

Additional information

Communicated by Diethart Matthies.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1250 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Nkurunziza, V., Barber, N.A. et al. Introduced ecological engineers drive behavioral changes of grasshoppers, consequently linking to its abundance in two grassland plant communities. Oecologia (2021). https://doi.org/10.1007/s00442-021-04880-4

Download citation

Keywords

  • Abundance
  • Behavioral activity
  • Grasshoppers
  • Introduced ecosystem engineers
  • Livestock grazing
  • Plant species diversity