Habitat loss and canopy openness mediate leaf trait plasticity of an endangered palm in the Brazilian Atlantic Forest

Abstract

Forest cover and light availability comprise key factors for plant establishment in tropical forests. In the Brazilian Atlantic Forest (AF), Euterpe edulis (Areacaceae) is an endangered and keystone food resource contributing to forest functionality. We investigated the influence of forest loss and light availability on leaf traits and acclimatization of young individuals of E. edulis in AF fragments. We aimed to understand (i) how canopy openness and transmitted light are affected by forest cover at the landscape scale and the individual palm level; and (ii) how local and landscape features, combined and separately, affect key leaf traits widely known to be related to plant growth. The study was carried out in 15 forest fragments, ranging from 16 to 97% of surrounding forest cover. In each fragment, we sampled 10–20 individuals of E. edulis and analyzed nine leaf traits related to morphological, biochemical and chemical aspects. We also took hemispherical photographs to estimate canopy openness on the top of each E. edulis and also within fragment plots. We found that young plants predominantly occurred in more shaded environments. Additionally, E. edulis succeeded to acclimate in six of the nine traits analyzed, with most traits being affected by local and landscape features. It is likely that the lack of variation in traits related to protection against herbivory are limiting the species establishment in highly deforested landscapes. Our results provide novel evidence that both landscape and local contexts affect the leaf traits of E. edulis young plants leading to biochemical, chemical and morphological adjustments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data will be available from the Figshare Repository.

References

  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  2. Ahmad I, Maathuis FJM (2014) Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. J Plant Physiol 171(9):708–714

    CAS  PubMed  Article  Google Scholar 

  3. Álvarez-Clare S, Avalos G (2007) Light interception efficiency of the understory palm Calyptrogyne ghiesbreghtiana under deep shade conditions. Ecotropica 13:1–8

    Google Scholar 

  4. Andrade ER, Jardim JG, Santos BA et al (2015) Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. For Ecol Manage 349:73–84. https://doi.org/10.1016/j.foreco.2015.03.049

    Article  Google Scholar 

  5. Arroyo-Rodríguez V, Fahrig L, Tabarelli M et al (2020) Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol Lett 23:1404–1420. https://doi.org/10.1111/ele.13535

    Article  PubMed  PubMed Central  Google Scholar 

  6. Avalos G (2016) Growth of the neotropical palm Euterpe precatoria (Arecaceae) under sun and shade conditions in an agroforestry system in Costa Rica. Brenesia 85:1–8

    Google Scholar 

  7. Avalos G (2019) Shade tolerance within the context of the successional process in tropical rain forests. Revista de Biología Tropical 67:S53–S77. https://doi.org/10.15517/RBT.V67I2SUPL.37206

    Article  Google Scholar 

  8. Avalos G, Fernández Otárola M, Engeln JT (2013) Successional stage, fragmentation and exposure to extraction influence the population structure of Euterpe precatoria (Arecaceae). Revista de Biología Tropical 61:1415–1424

    PubMed  PubMed Central  Google Scholar 

  9. Benchimol M, Talora DC, Mariano-Neto E et al (2017a) Losing our palms: The influence of landscape-scale deforestation on Arecaceae diversity in the Atlantic forest. For Ecol Manage 384:314–322. https://doi.org/10.1016/j.foreco.2016.11.014

    Article  Google Scholar 

  10. Benchimol M, Mariano-Neto E, Faria D (2017b) Translating plant community responses to habitat loss into conservation practices: Forest cover matters. Biol Cons 209:499–507. https://doi.org/10.1016/j.biocon.2017.03.024

    Article  Google Scholar 

  11. Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24(1):225–252

    CAS  Article  Google Scholar 

  12. Boeger MRT, Wisbievski C, Reissmann CB (2005) Leaf nutrient content of tree species from the successional stages of tropical rain forest in south Brazil. Acta Botanica Brasilica 19:167–181

    Article  Google Scholar 

  13. Bonfim JA, Vasconcellos RLF, Stürmer SL, Cardoso EJBN (2013) Arbuscular mycorrhizal fungi in the Brazilian Atlantic forest: a gradient of environmental restoration. Appl Soil Ecol 71:7–14

    Article  Google Scholar 

  14. Brancalion PH, Oliveira GC, Zucchi MI et al (2018) Phenotypic plasticity and local adaptation favor range expansion of a Neotropical palm. Ecol Evol 8:7462–7475

    PubMed  PubMed Central  Article  Google Scholar 

  15. Braz MIG, Portela RDCQ, Cosme LHM, Marques VGC, de Mattos EA (2014) Germination niche breadth differs in two co-occurring palms of the Atlantic Rainforest. Natureza Conservação 12:124–128

    Article  Google Scholar 

  16. Brum HD, Souza AF (2020) Flood disturbance and shade stress shape the population structure of açaí palm Euterpe precatoria, the most abundant Amazon species. Botany 98:147–160

    Article  Google Scholar 

  17. Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168(4):521–530

    CAS  Article  Google Scholar 

  18. Carvalho CS, Ribeiro MC, Côrtes MC, Galetti M, Collevatti RG (2015) Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm. Heredity 115:216–224. https://doi.org/10.1038/hdy.2015.30

    Article  Google Scholar 

  19. Cerqueira AF, Dalmolin ÂC, dos Anjos L, da Silva Ledo CA, da Costa SD, Mielke MS (2018) Photosynthetic plasticity of young plants of Carpotroche brasiliensis (Raddi) A. Gray. Achariaceae Trees 32:191–202. https://doi.org/10.1007/s00468-017-1623-6

    CAS  Article  Google Scholar 

  20. Chen J, Saunders SC, Crow TR et al (1999) Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49:288–297

    Article  Google Scholar 

  21. Chen ZC, Peng WT, Li J, Liao H (2018) Functional dissection and transport mechanism of magnesium in plants. Semin Cell Dev Biol 74:142–152. https://doi.org/10.1016/j.semcdb.2017.08.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Cintra R, Horna V (1997) Seed and seedling survival of the palm Astrocaryum murumuru and the legume tree Dipteryx micrantha in gaps in Amazonian forest. J Trop Ecol 13:257–277

    Article  Google Scholar 

  23. Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31(1):239–298

    CAS  Article  Google Scholar 

  24. De Carvalho RM, Martins FR, Santos FA (1999) Leaf ecology of pre-reproductive ontogenetic stages of the palm tree Euterpe edulis Mart. (Arecaceae). Ann Bot 83:225–233

    Article  Google Scholar 

  25. de Souza AC, Prevedello JA (2020) The importance of protected areas for overexploited plants: evidence from a biodiversity hotspot. Biol Cons 243:108482. https://doi.org/10.1016/j.biocon.2020.108482

    Article  Google Scholar 

  26. Dodonov P, Morante-Filho JC, Mariano-Neto E et al (2016) Forest loss increases insect herbivory levels in human-altered landscapes. Acta Oecologica 77:136–143. https://doi.org/10.1016/j.actao.2016.10.003

    Article  Google Scholar 

  27. Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG (2010) Germination, postgermination adaptation, and species ecological ranges. Annu Rev Ecol Evol Syst 41:293–319

    Article  Google Scholar 

  28. Dos Anjos L, Oliva MA, Kuki KN et al (2015) Key leaf traits indicative of photosynthetic plasticity in tropical tree species. Trees 29:247–258. https://doi.org/10.1007/s00468-014-1110-2

    CAS  Article  Google Scholar 

  29. Dos Santos MLS, França S, Gomes FP, do Nascimento JL, Silva LDA, Mielke MS (2012) Low light availability affects leaf gas exchange, growth and survival of Euterpe edulis seedlings transplanted into the understory of an anthropic tropical rainforest. South For J For Sci 74:167–174. https://doi.org/10.1007/s10592-015-0740-2

    Article  Google Scholar 

  30. Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA (1999) Embrapa Solos, Embrapa Informática Agropecuária. Manual de análises químicas de solos, plantas e fertilizantes, 2nd edn. Embrapa Comunicação para Transferência de Tecnologia, Brasília

    Google Scholar 

  31. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  32. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663. https://doi.org/10.1111/jbi.12130

    Article  Google Scholar 

  33. Fauset S, Gloor MU, Aidar MP et al (2017) Tropical forest light regimes in a human-modified landscape. Ecosphere 8:e02002. https://doi.org/10.1002/ecs2.2002

    Article  PubMed  PubMed Central  Google Scholar 

  34. Feijó NS, Mielke MS, Gomes FP, França S, Lavinsky AO (2009) Growth and photosynthetic responses of Gallesia integrifolia (Spreng.) Harms and Schinus terebinthifolius Raddi seedlings in dense shade. Agroforest Syst 77:49. https://doi.org/10.1007/s10457-008-9190-x

    Article  Google Scholar 

  35. Ferri CP, Cavalcante ASL (1997) Pupunha para palmito. Ministério da Agricultura e do Abastecimento. Empresa Brasileira de Pesquisa Agropecuária e Abastecimento, Rio Branco

    Google Scholar 

  36. Fini A, Ferrini F, Frangi P, Amoroso G, Giordano C (2010) Growth, leaf gas exchange and leaf anatomy of three ornamental shrubs grown under different light intensities. Eur J Hortic Sci 75:111–117

    CAS  Google Scholar 

  37. Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York, p 36

    Google Scholar 

  38. Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090. https://doi.org/10.1046/j.1365-2664.1998.00295.x

    CAS  Article  PubMed  Google Scholar 

  39. Gatti MG, Campanello PI, Goldstein G (2011) Growth and leaf production in the tropical palm Euterpe edulis: light conditions versus developmental constraints. Flora Morphol Distrib Funct Ecol Plants 206:742–748

    Article  Google Scholar 

  40. Gatti MG, Campanello PI, Villagra M, Montti L, Goldstein G (2014) Hydraulic architecture and photoinhibition influence spatial distribution of the arborescent palm Euterpe edulis in subtropical forests. Tree Physiol 34:630–639

    PubMed  Article  Google Scholar 

  41. Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Funct Plant Biol 15:63–92

    Article  Google Scholar 

  42. Hallik L, Niinemets Ü, Kull O (2011) Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Plant Biol 14:88–99. https://doi.org/10.1111/j.1438-8677.2011.00472.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Hodel DR (1992) Chamaedorea palms: the species and their cultivation. International Palm Society, Lawrence

    Google Scholar 

  44. Holbrook KM (2011) Home range and movement patterns of toucans: implications for seed dispersal. Biotropica 43:357–364. https://doi.org/10.1111/j.1744-7429.2010.00710.x

    Article  Google Scholar 

  45. Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. Bioscience 54:227–233

    Article  Google Scholar 

  46. Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63

    Article  Google Scholar 

  47. Kattge J, Knorr W, Raddatz T, Wirth C (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Change Biol 15:976–991. https://doi.org/10.1111/j.1365-2486.2008.01744.x

    Article  Google Scholar 

  48. Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419–428

    PubMed  Article  Google Scholar 

  49. Kitajima K, Poorter L (2010) Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol 186:708–721. https://doi.org/10.1111/j.1469-8137.2010.03212.x

    Article  PubMed  Google Scholar 

  50. Kitajima K, Mulkey SS, Wright SJ (2005) Variation in crown light utilization characteristics among tropical canopy trees. Ann Bot 95:535–547. https://doi.org/10.1093/aob/mci051

    Article  PubMed  Google Scholar 

  51. Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2000) Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant, Cell Environ 23:81–89. https://doi.org/10.1046/j.1365-3040.2000.00528.x

    Article  Google Scholar 

  52. Laurans M, Hérault B, Vieilledent G, Vincent G (2014) Vertical stratification reduces competition for light in dense tropical forests. For Ecol Manage 329:79–88. https://doi.org/10.1016/j.foreco.2014.05.059

    Article  Google Scholar 

  53. Lavinsky AO, Gomes FP, Mielke MS, França S (2014) Photosynthetic acclimation in shade-developed leaves of Euterpe edulis Mart (Arecaceae) after long-term exposure to high light. Photosynthetica 52:351–357. https://doi.org/10.1007/s11099-014-0038-5

    CAS  Article  Google Scholar 

  54. Leal OA (2019) Influência da cobertura florestal na paisagem, seca regional e fatores microclimáticos na estrutura demográfica de Euterpe edulis Mart. em fragmentos florestais do sul da Bahia. Master thesis. Universidade Estadual de Santa Cruz, Brazil.

  55. Li Y, Liu X, Zhuang W (2000) Advances in magnesium nutritional physiology in plants. J Fujian Agric Univ 29:74–80

    Google Scholar 

  56. Lima MM, Mariano-Neto E (2014) Extinction thresholds for Sapotaceae due to forest cover in Atlantic Forest landscapes. For Ecol Manage 312:260–270. https://doi.org/10.1016/j.foreco.2013.09.003

    Article  Google Scholar 

  57. Lusk CH (2002) Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest. Oecologia 132:188–196. https://doi.org/10.1007/s00442-002-0974-9

    Article  PubMed  Google Scholar 

  58. Lusk CH (2019) Leaf functional trait variation in a humid temperate forest, and relationships with juvenile tree light requirements. PeerJ 7:e6855. https://doi.org/10.7717/peerj.6855

    Article  PubMed  PubMed Central  Google Scholar 

  59. Markesteijn L, Poorter L, Bongers F (2007) Light-dependent leaf trait variation in 43 tropical dry forest tree species. Am J Bot 94:515–525. https://doi.org/10.3732/ajb.94.4.515

    Article  PubMed  Google Scholar 

  60. Matos SDM, Freckleton RP, Watkinson AR (1999) The role of density dependence in the population dynamics of a tropical palm. Ecology 80:2635–2650

    Article  Google Scholar 

  61. Matthews JS, Vialet-Chabrand SR, Lawson T (2017) Diurnal variation in gas exchange: the balance between carbon fixation and water loss. Plant Physiol 174:614–623. https://doi.org/10.1104/pp.17.00152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Mendes MM, Gazarini LC, Rodrigues ML (2001) Acclimation of Myrtus communis to contrasting Mediterranean light environments—effects on structure and chemical composition of foliage and plant water relations. Environ Exp Bot 45:165–178. https://doi.org/10.1016/S0098-8472(01)00073-9

    CAS  Article  PubMed  Google Scholar 

  63. Metzger JP, Martensen AC, Dixo M et al (2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Cons 142:1166–1177. https://doi.org/10.1016/j.biocon.2009.01.033

    Article  Google Scholar 

  64. MMA—Ministério do Meio Ambiente (2014) Portaria n. 443, de 17 de dezembro de 2014. Lista nacional oficial das espécies da Flora ameaçadas de extinção. Diário Oficial da União 18:110–121

    Google Scholar 

  65. Mo Q, Li Z, Sayer EJ, Lambers H, Li Y, Zou B, Tang J, Heskel M, Ding Y, Wang F, Ostertag R (2018) Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability. Funct Ecol 33(3):503–513

    Article  Google Scholar 

  66. Monteiro MV, Blanuša T, Verhoef A, Hadley P, Cameron RW (2016) Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Aust J Bot 64:32–44. https://doi.org/10.1071/BT15198

    CAS  Article  Google Scholar 

  67. Montgomery RA, Chazdon RL (2001) Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82:2707–2718. https://doi.org/10.1890/0012-9658(2001)082[2707:FSCAAL]2.0.CO;2

    Article  Google Scholar 

  68. Morante-Filho JC, Faria D, Mariano-Neto E, Rhodes J (2015) Birds in anthropogenic landscapes: the responses of ecological groups to forest loss in the Brazilian Atlantic Forest. PLoS ONE 10:e0128923. https://doi.org/10.1371/journal.pone.0128923

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Morante-Filho JC, Arroyo-Rodríguez V, Lohbeck M, Tscharntke T, Faria D (2016) Tropical forest loss and its multitrophic effects on insect herbivory. Ecology 97:3315–3325. https://doi.org/10.1002/ecy.1592

    Article  PubMed  Google Scholar 

  70. Moreaes CSR (2017) Dinâmica de nutrientes em florestas alteradas do sul da Bahia. Doctoral dissertation. Universidade Estadual de Santa Cruz, Brazil.

  71. Moreira SLS, Prates Júnior P, Fernandes RBA, Cunha ACMMD, Campos ANDR (2016) Growth and nutrients uptake in Euterpe edulis Martius inoculated with arbuscular mycorrhizal fungi. Pesquisa Agropecuária Tropical 46:169–176

    Article  Google Scholar 

  72. Mori SA, Boom BM, de Carvalho AM, dos Santos TS (1983) Southern Bahian moist forests. Bot Rev 49:155–232

    Article  Google Scholar 

  73. Nicotra AB, Chazdon RL, Iriarte SV (1999) Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80:1908–1926. https://doi.org/10.1890/0012-9658(1999)080[1908:SHOLAW]2.0.CO;2

    Article  Google Scholar 

  74. Niinemets Ü (2010) A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res 25:693–714. https://doi.org/10.1007/s11284-010-0712-4

    Article  Google Scholar 

  75. Novoa R, Loomis RS (1981) Nitrogen and plant production. Plant Soil 58:177–204

    CAS  Article  Google Scholar 

  76. Ordóñez-Gómez JD, Arroyo-Rodríguez V, Nicasio-Arzeta S, Cristóbal-Azkarate J (2015) Which is the appropriate scale to assess the impact of landscape spatial configuration on the diet and behavior of spider monkeys? Am J Primatol 77:56–65

    PubMed  Article  Google Scholar 

  77. Peeters PJ, Sanson G, Read J (2007) Leaf biomechanical properties and the densities of herbivorous insect guilds. Funct Ecol 21:246–255. https://doi.org/10.1111/j.1365-2435.2006.01223.x

    Article  Google Scholar 

  78. Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743. https://doi.org/10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2

    Article  PubMed  Google Scholar 

  79. Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x

    Article  PubMed  Google Scholar 

  80. Portela RCQ, Dirzo R (2020) Forest fragmentation and defaunation drive an unusual ecological cascade: Predation release, monkey population outburst and plant demographic collapse. Biol Cons 252:108852

    Article  Google Scholar 

  81. Prado Júnior J, Schiavini I, Vale V, Lopes S, Arantes C, Oliveira AP (2015) Functional leaf traits of understory species: strategies to different disturbance severities. Braz J Biol 75:339–346. https://doi.org/10.1590/1519-6984.12413

    Article  PubMed  Google Scholar 

  82. R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  83. Reich PB, Oleksyn J, Wright IJ (2009) Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160(2):207–212

    PubMed  Article  Google Scholar 

  84. Reis A, Kageyama PY, Reis MD, Fantini A (1996) Demografia de Euterpe edulis Martius (Arecaceae) em uma floresta ombrófila densa montana. Blumenau (SC). Sellowia 45:13–45

    Google Scholar 

  85. Rezende CL, Scarano FR, Assad ED et al (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conserv 16:208–214. https://doi.org/10.1016/j.pecon.2018.10.002

    Article  Google Scholar 

  86. Rigueira DMG, da Rocha PLB, Mariano-Neto E (2013) Forest cover, extinction thresholds and time lags in woody plants (Myrtaceae) in the Brazilian Atlantic Forest: resources for conservation. Biodivers Conserv 22:3141–3163. https://doi.org/10.1007/s10531-013-0575-4

    Article  Google Scholar 

  87. Rocha-Santos L, Pessoa MS, Cassano CR et al (2016) The shrinkage of a forest: landscape-scale deforestation leading to overall changes in local forest structure. Biol Cons 196:1–9. https://doi.org/10.1016/j.biocon.2016.01.028

    Article  Google Scholar 

  88. Rocha-Santos L, Benchimol M, Mayfield MM et al (2017) Functional decay in tree community within tropical fragmented landscapes: effects of landscape-scale forest cover. PLoS ONE 12:e0175545. https://doi.org/10.1371/journal.pone.0175545

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Rode MW (1995) Aboveground nutrient cycling and forest development on poor sandy soil. Nutrient uptake and cycling in forest ecosystems. Springer, Dordrecht, pp 337–343

    Google Scholar 

  90. Rodriguez HG, Maiti R, Kumari CA (2016) Biodiversity of leaf traits in woody plant species in Northeastern Mexico: a synthesis. For Res 5:169. https://doi.org/10.4172/2168-9776.1000169

    Article  Google Scholar 

  91. Rozendaal DMA, Hurtado VH, Poorter L (2006) Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Funct Ecol 20:207–216. https://doi.org/10.1111/j.1365-2435.2006.01105.x

    Article  Google Scholar 

  92. Sánchez-Gómez D, Valladares F, Zavala MA (2006) Performance of seedlings of Mediterranean woody species under experimental gradients of irradiance and water availability: trade-offs and evidence for niche differentiation. New Phytol 170:795–806. https://doi.org/10.1111/j.1469-8137.2006.01711.x

    Article  PubMed  PubMed Central  Google Scholar 

  93. Santos AS, Cazetta E, Morante Filho JC, Baumgarten J, Faria D, Gaiotto FA (2015) Lessons from a palm: genetic diversity and structure in anthropogenic landscapes from Atlantic Forest, Brazil. Conserv Genet 16:1295–1302

    Article  Google Scholar 

  94. Schlichting AF, Bonfim-Silva EM, Silva MC, Pietro-Souza W, da Silva TJA, Farias NL (2015) Efficiency of portable chlorophyll meters in assessing the nutritional status of wheat plants. Revista Brasileira de Engenharia Agrícola e Ambiental 19(12):1148–1151

    Article  Google Scholar 

  95. Sgrott AF, Booz MR, Pescador R, Heck TC, Stürmer SL (2012) Arbuscular mycorrhizal inoculation increases biomass of Euterpe edulis and Archontophoenix alexandrae after two years under field conditions. Revista Brasileira de Ciência do Solo 36:1103–1112

    Article  Google Scholar 

  96. Silva MD (1991) Estrutura de tamanho e padrão espacial de uma população de Euterpe edulis Mart. (Arecaceae) em mata mesófila semidecídua no município de Campinas, SP. Doctoral dissertation, Universidade Estadual de Santa Cruz, Brazil

  97. Silva IA, Batalha MA (2009) Phylogenetic overdispersion of plant species in southern Brazilian savannas. Braz J Biol 69:843–849. https://doi.org/10.1590/S1519-69842009000400011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Silva MGCPC, Martini AMZ, Araújo QR (2009) Estrutura populacional de Euterpe edulis Mart. no sul da Bahia. Brasil Revista Brasileira de Botânica 32:393–403. https://doi.org/10.1590/S0100-84042009000200017

    Article  Google Scholar 

  99. Soares LASS, Faria D, Vélez-Garcia F, Vieira EM, Talora DC, Cazetta E (2015) Implications of habitat loss on seed predation and early recruitment of a keystone palm in anthropogenic landscapes in the Brazilian Atlantic rainforest. PLoS ONE. https://doi.org/10.1371/journal.pone.0133540

    Article  PubMed  PubMed Central  Google Scholar 

  100. Soares LASS, Cazetta E, Santos LR, França DDS, Gaiotto FA (2019) Anthropogenic disturbances eroding the genetic diversity of a threatened palm tree: a multiscale approach. Front Genet 10:1090. https://doi.org/10.3389/fgene.2019.01090

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sos Mata Atlântica (2020) Atlas dos remanescentes florestais da Mata Atlântica: 2018–2019. INPE, São Paulo, pp 1–64

    Google Scholar 

  102. Sterck FJ, Bongers F (2001) Crown development in tropical rain forest trees: patterns with tree height and light availability. J Ecol 89:1–13

    Article  Google Scholar 

  103. Stürmer SL, Klauberg Filho O, Queiroz MHD, Mendonça MMD (2006) Occurrence of arbuscular mycorrhizal fungi in soils of early stages of a secondary succession of Atlantic Forest in South Brazil. Acta Botanica Brasilica 20:513–521

    Article  Google Scholar 

  104. Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. Terashima I, Miyazawa SI, Hanba YT (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105

    CAS  Article  Google Scholar 

  106. Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. Terborgh J, Davenport L (2001) Endogenous and exogenous control of leaf morphology in Iriartea deltoidea (Palmae). J Trop Ecol 17:695–703

    Article  Google Scholar 

  108. Thomas WW (2003) Natural vegetation types in southern Bahia. In: Prado PI, Landau EC, Moura RT, Pinto LPS, Fonseca GAB, Alger K (eds) Corredor De Biodiversidade da Mata Atlântica do Sul da Bahia. Publicação em CD-ROM, Ilhéus, IESB/CI/CABS/UFMG/UNICAMP, pp 1–4

    Google Scholar 

  109. Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506

    Article  Google Scholar 

  110. Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81:1925–1936. https://doi.org/10.1890/0012-658(2000)081[1925:PPRTLO]2.0.CO;2

    Article  Google Scholar 

  111. Valladares F, Sanchez-Gomez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x

    Article  Google Scholar 

  112. Valladares F, Laanisto L, Niinemets Ü, Zavala MA (2016) Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecol Divers 9:237–251. https://doi.org/10.1080/17550874.2016.1210262

    Article  Google Scholar 

  113. Vamosi JC, Vamosi SM (2008) Extinction risk escalates in the tropics. PLoS ONE 3:e3886. https://doi.org/10.1371/journal.pone.0003886

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Viera Silva D, Dos Anjos L, Brito-Rocha E, Dalmolin AC, Mielke MS (2016) Calibration of a multi-species model for chlorophyll estimation in seedlings of Neotropical tree species using hand-held leaf absorbance meters and spectral reflectance. iForest-Biogeosci For 9(5):829–834

    Article  Google Scholar 

  115. Vile D, Garnier E, Shipley B et al (2005) Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann Bot 96:1129–1136. https://doi.org/10.1093/aob/mci264

    Article  PubMed  PubMed Central  Google Scholar 

  116. Vitória AP, Alves LF, Santiago LS (2019) Atlantic forest and leaf traits: an overview. Trees. https://doi.org/10.1007/s00468-019-01864-z

    Article  Google Scholar 

  117. Wang J, Wen X, Zhang X, Li S, Zhang DY (2018) Co-regulation of photosynthetic capacity by nitrogen, phosphorus and magnesium in a subtropical Karst forest in China. Sci Rep 8:7406. https://doi.org/10.1038/s41598-018-25839-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Wright IJ, Westoby M (2002) Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol 155:403–416. https://doi.org/10.1046/j.1469-8137.2002.00479.x

    Article  Google Scholar 

  119. Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature. https://doi.org/10.1038/nature02403

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zangaro W, de Assis RL, Rostirola LV, de Souza PB, Gonçalves MC, Andrade G, Nogueira MA (2008) Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil. Mycorrhiza 19:37–45

    PubMed  Article  Google Scholar 

  121. Zarco-Tejada PJ, Miller JR, Morales A, Berjón A, Agüera J (2004) Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens Environ 90:463–476. https://doi.org/10.1016/j.rse.2004.01.017

    Article  Google Scholar 

  122. Zhang L, Pan L (2011) Allometric models for leaf area estimation across different leaf-age groups of evergreen broadleaved trees in a subtropical forest. Photosynthetica 49:219–226. https://doi.org/10.1007/s11099-011-0027-x

    Article  Google Scholar 

  123. Zhao D, Oosterhuis DM (1998) Influence of shade on mineral nutrient status of field-grown cotton. J Plant Nutr 21:1681–1695. https://doi.org/10.1080/01904169809365513

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was financed by the Brazilian National Council for Scientific and Technological Development CNPq; 563216/2010-7), by the Coordination of Superior Level Staff Improvement—Brasil (CAPES)—Finance Code 001, and by Universidade Estadual de Santa Cruz (PROPP 00220.1100.1800). The authors thank the landowners for allowing us to work on their properties and to all who helped in the map processing and field work, mainly MSc Elisa Sodré for hemispherical photographs. We are grateful to Deborah Faria for coordinating the Rede SISBIOTA project (CNPq 563216 / 2010-7), in which this study is inserted, being the publication number 38 of this project. Marcelo S. Mielke gratefully acknowledge CNPq (Brazilian National Council for Scientific and Technological Development) for the award of fellowship of scientific productivity (305477/2018-8).

Author information

Affiliations

Authors

Contributions

A.F.C. and M.S.M. conceived this study. A.F.C. collected the data. A.F.C analyzed the data with contributions from L.R.S., and M. B. and A.F.C. wrote the manuscript with all co- authors contributing to the final version.

Corresponding author

Correspondence to Amanda F. Cerqueira.

Additional information

We have combined the perspectives from plant ecophysiology and landscape ecology to examine leaf trait spectra for an endangered palm species in Brazil. Our research has shown that dynamic community and ecosystem processes, which affect canopy structure and microclimate, exert significant influences on trait expression, and likely determine important fitness and persistence outcomes at the organismic scale. Conservation of endangered species like Euterpe edulis will benefit from the incorporation of such cross-scale perspectives on plant adaptation.

Communicated by Gerardo Avalos.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 505 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cerqueira, A.F., Rocha-Santos, L., Benchimol, M. et al. Habitat loss and canopy openness mediate leaf trait plasticity of an endangered palm in the Brazilian Atlantic Forest. Oecologia (2021). https://doi.org/10.1007/s00442-021-04879-x

Download citation

Keywords

  • Tropical forest
  • Landscape change
  • Palm tree
  • Acclimation
  • Canopy openness
  • Plasticity