Skip to main content

Detecting turnover among complex communities using null models: a case study with sky-island haemosporidian parasites

Abstract

Turnover in species composition between sites, or beta diversity, is a critical component of species diversity that is typically influenced by geography, environment, and biotic interactions. Quantifying turnover is particularly challenging, however, in multi-host, multi-parasite assemblages where undersampling is unavoidable, resulting in inflated estimates of turnover and uncertainty about its spatial scale. We developed and implemented a framework using null models to test for community turnover in avian haemosporidian communities of three sky islands in the southwestern United States. We screened 776 birds for haemosporidian parasites from three genera (Parahaemoproteus, Plasmodium, and Leucocytozoon) by amplifying and sequencing a mitochondrial DNA barcode. We detected infections in 280 birds (36.1%), sequenced 357 infections, and found a total of 99 parasite haplotypes. When compared to communities simulated from a regional pool, we observed more unique, single-mountain haplotypes and fewer haplotypes shared among three mountain ranges than expected, indicating that haemosporidian communities differ to some degree among adjacent mountain ranges. These results were robust even after pruning datasets to include only identical sets of host species, and they were consistent for two of the three haemosporidian genera. The two more distant mountain ranges were more similar to each other than the one located centrally, suggesting that the differences we detected were due to stochastic colonization–extirpation dynamics. These results demonstrate that avian haemosporidian communities of temperate-zone forests differ on relatively fine spatial scales between adjacent sky islands. Null models are essential tools for testing the spatial scale of turnover in complex, undersampled, and poorly known systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson MJ, Crist TO, Chase JM et al (2011) Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x

    Article  PubMed  Google Scholar 

  2. Asghar M, Hasselquist D, Hansson B et al (2015) Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347:436–438. https://doi.org/10.1126/science.1261121

    CAS  Article  PubMed  Google Scholar 

  3. Atkinson CT, LaPointe DA (2009) Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers. J Avian Med Surg 23:53–63. https://doi.org/10.1647/2008-059.1

    Article  PubMed  Google Scholar 

  4. Barrow LN, McNew SM, Mitchell N et al (2019) Deeply conserved susceptibility in a multi-host, multi-parasite system. Ecol Lett 22:987–998. https://doi.org/10.1111/ele.13263

    Article  PubMed  Google Scholar 

  5. Beck J, Holloway JD, Schwanghart W (2013) Undersampling and the measurement of beta diversity. Methods Ecol Evol 4:370–382. https://doi.org/10.1111/2041-210x.12023

    Article  Google Scholar 

  6. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358. https://doi.org/10.1111/j.1755-0998.2009.02692.x

    Article  PubMed  Google Scholar 

  7. Betancourt JL, Van Devender TR, Martin PS (1990) Packrat middens: the last 40,000 years of biotic change. University of Arizona Press, Tucson

    Google Scholar 

  8. Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354. https://doi.org/10.1126/science.1127863

    CAS  Article  PubMed  Google Scholar 

  9. Borner J, Pick C, Thiede J et al (2016) Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach. Mol Phylogenet Evol 94:221–231. https://doi.org/10.1016/j.ympev.2015.09.003

    CAS  Article  PubMed  Google Scholar 

  10. Bouckaert R, Heled J, Kuhnert D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. https://doi.org/10.1371/journal.pcbi.1003537

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Brooks DR, Hoberg EP (2007) How will global climate change affect parasite-host assemblages? Trends Parasitol 23:571–574. https://doi.org/10.1016/j.pt.2007.08.016

    Article  PubMed  Google Scholar 

  12. Brooks DR, León-Règagnon V, Mclennan DA, Zelmer D (2006) Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology 87:S76–S85

    Article  Google Scholar 

  13. Buckley LB, Jetz W (2008) Linking global turnover of species and environments. Proc Natl Acad Sci 105:17836–17841. https://doi.org/10.1073/pnas.0803524105

    Article  PubMed  Google Scholar 

  14. Cardoso P, Borges PAV, Veech JA (2009) Testing the performance of beta diversity measures based on incidence data: the robustness to undersampling. Divers Distrib 15:1081–1090. https://doi.org/10.1111/j.1472-4642.2009.00607.x

    Article  Google Scholar 

  15. Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159. https://doi.org/10.1111/j.1461-0248.2004.00707.x

    Article  Google Scholar 

  16. Chao A, Chazdon RL, Colwell RK, Shen TJ (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62:361–371. https://doi.org/10.1111/j.1541-0420.2005.00489.x

    Article  PubMed  Google Scholar 

  17. Clark NJ (2018) Phylogenetic uniqueness, not latitude, explains the diversity of avian blood parasite communities worldwide. Glob Ecol Biogeogr 27:744–755. https://doi.org/10.1111/geb.12741

    Article  Google Scholar 

  18. Clark NJ, Clegg SM (2017) Integrating phylogenetic and ecological distances reveals new insights into parasite host specificity. Mol Ecol 26:3074–3086. https://doi.org/10.1111/mec.14101

    Article  PubMed  Google Scholar 

  19. Clark NJ, Clegg SM, Sam K et al (2018) Climate, host phylogeny and the connectivity of host communities govern regional parasite assembly. Divers Distrib 24:13–23. https://doi.org/10.1111/ddi.12661

    Article  Google Scholar 

  20. Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. http://purl.oclc.org/estimates

  21. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B Biol Sci 345:101–118

    CAS  Article  Google Scholar 

  22. Colwell RK, Chao A, Gotelli NJ et al (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21. https://doi.org/10.1093/jpe/rtr044

    Article  Google Scholar 

  23. Dallas T, Cornelius E (2015) Co-extinction in a host-parasite network: identifying key hosts for network stability. Sci Rep 5:1–10. https://doi.org/10.1038/srep13185

    CAS  Article  Google Scholar 

  24. Dornelas M, Gotelli NJ, McGill B et al (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299. https://doi.org/10.1126/science.1248484

    CAS  Article  PubMed  Google Scholar 

  25. Ellis VA, Collins MD, Medeiros MCI et al (2015) Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites. Proc Natl Acad Sci 112:11294–11299. https://doi.org/10.1073/pnas.1515309112

    CAS  Article  PubMed  Google Scholar 

  26. Fallon SM, Bermingham E, Ricklefs RE (2003) Island and taxon effects in parasitism revisited: Avian malaria in the Lesser Antilles. Evolution 57:606–615. https://doi.org/10.1554/0014-3820(2003)057[0606:IATEIP]2.0.CO;2

    Article  PubMed  Google Scholar 

  27. Fallon SM, Ricklefs RE, Latta SC, Bermingham E (2004) Temporal stability of insular avian malarial parasite communities. Proc R Soc B Biol Sci 271:493–500. https://doi.org/10.1098/rspb.2003.2621

    CAS  Article  Google Scholar 

  28. Fallon SM, Bermingham E, Ricklefs RE (2005) Host specialization and geographic localization of avian malaria parasites: a regional analysis in the Lesser Antilles. Am Nat 165:466–480. https://doi.org/10.1086/428430

    Article  PubMed  Google Scholar 

  29. Fecchio A, Pinheiro R, Felix G et al (2017) Host community similarity and geography shape the diversity and distribution of haemosporidian parasites in Amazonian birds. Ecography 41:505–515. https://doi.org/10.1111/ecog.03058

    Article  Google Scholar 

  30. Fecchio A, Bell JA, Pinheiro RBP et al (2019) Avian host composition, local speciation, and dispersal drive the regional assembly of avian malaria parasites in South American birds. Mol Ecol 28:2681–2693. https://doi.org/10.1111/mec.15094

    Article  PubMed  Google Scholar 

  31. Fecchio A, Bell JA, Bosholn M et al (2020) An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds. J Anim Ecol 89:423–435. https://doi.org/10.1111/1365-2656.13117

    Article  PubMed  Google Scholar 

  32. Fitzpatrick MC, Sanders NJ, Normand S et al (2013) Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc R Soc B Biol Sci 280:20131201. https://doi.org/10.1098/rspb.2013.1201

    Article  Google Scholar 

  33. Galen SC, Witt CC (2014) Diverse avian malaria and other haemosporidian parasites in Andean house wrens: Evidence for regional co-diversification by host-switching. J Avian Biol 45:374–386. https://doi.org/10.1111/jav.00375

    Article  Google Scholar 

  34. Galen SC, Borner J, Martinsen ES et al (2018) The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict. R Soc Open Sci 5:171780. https://doi.org/10.1098/rsos.171780

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621

    Article  Google Scholar 

  36. Gotelli NJ, Ulrich W (2012) Statistical challenges in null model analysis. Oikos 121:171–180. https://doi.org/10.1111/j.1600-0706.2011.20301.x

    Article  Google Scholar 

  37. Gupta P, Vishnudas CK, Ramakrishnan U et al (2019) Geographical and host species barriers differentially affect generalist and specialist parasite community structure in a tropical sky-island archipelago. Proc R Soc B Biol Sci 286:20190439. https://doi.org/10.1098/rspb.2019.0439

    Article  Google Scholar 

  38. Hackett SJ, Kimball RT, Reddy S et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science (New York, NY) 320:1763–1768. https://doi.org/10.1126/science.1157704

    CAS  Article  Google Scholar 

  39. Harrigan RJ, Sedano R, Chasar AC et al (2014) New host and lineage diversity of avian haemosporidia in the northern andes. Evol Appl 7:799–811. https://doi.org/10.1111/eva.12176

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harrison S, Ross SJ, Lawton JH (1992) Beta diversity on geographic gradients in Britain. J Anim Ecol 61:151–158

    Article  Google Scholar 

  41. Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802. https://doi.org/10.1645/GE-184R1

    CAS  Article  PubMed  Google Scholar 

  42. Hellgren O, Waldenström J, Peréz-Tris J et al (2007) Detecting shifts of transmission areas in avian blood parasites—a phylogenetic approach. Mol Ecol 16:1281–1290. https://doi.org/10.1111/j.1365-294X.2007.03227.x

    Article  PubMed  Google Scholar 

  43. Hellgren O, Pérez-Tris J, Bensch S (2009) A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology 90:2840–2849. https://doi.org/10.1890/08-1059.1

    Article  PubMed  Google Scholar 

  44. Hellgren O, Atkinson CT, Bensch S et al (2015) Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity. Ecography 38:842–850. https://doi.org/10.1111/ecog.01158

    Article  Google Scholar 

  45. Holmgren CA, Betancourt JL, Rylander KA (2006) A 36,000-yr vegetation history from the Peloncillo Mountains, southeastern Arizona, USA. Palaeogeogr Palaeoclimatol Palaeoecol 240:405–422. https://doi.org/10.1016/j.palaeo.2006.02.017

    Article  Google Scholar 

  46. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406. https://doi.org/10.1128/AEM.67.10.4399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Ishtiaq F, Clegg SM, Phillimore AB et al (2010) Biogeographical patterns of blood parasite lineage diversity in avian hosts from southern Melanesian islands. J Biogeogr 37:120–132. https://doi.org/10.1111/j.1365-2699.2009.02189.x

    Article  Google Scholar 

  48. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT) available from http://srtm.csi.cgiar.org

  49. Jetz W, Thomas GH, Joy JB et al (2012) The global diversity of birds in space and time. Nature 491:444–448. https://doi.org/10.1038/nature11631

    CAS  Article  PubMed  Google Scholar 

  50. Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. https://doi.org/10.1093/bioinformatics/btq166

    CAS  Article  PubMed  Google Scholar 

  51. Knowles LL (2001) Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshopprers. Mol Ecol 10:691–701. https://doi.org/10.1046/j.1365-294X.2001.01206.x

    CAS  Article  PubMed  Google Scholar 

  52. Knowles SCL, Palinauskas V, Sheldon BC (2010) Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol 23:557–569. https://doi.org/10.1111/j.1420-9101.2009.01920.x

    CAS  Article  PubMed  Google Scholar 

  53. Krasnov BR, Stanko M, Khokhlova IS et al (2011) Nestedness and β-diversity in ectoparasite assemblages of small mammalian hosts: effects of parasite affinity, host biology and scale. Oikos 120:630–639. https://doi.org/10.1111/j.1600-0706.2010.19072.x

    Article  Google Scholar 

  54. Lanfear R, Frandsen PB, Wright AM et al (2017) Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. https://doi.org/10.1093/molbev/msw260

    CAS  Article  PubMed  Google Scholar 

  55. LaPointe DA, Goff ML, Atkinson CT (2010) Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodiumrelictum in Hawai’i. J Parasitol 96:318–324. https://doi.org/10.1645/GE-2290.1

    Article  PubMed  Google Scholar 

  56. Latta RG, Mitton JB (1999) Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution 53:769–776. https://doi.org/10.1111/j.1558-5646.1999.tb05371.x

    Article  PubMed  Google Scholar 

  57. Loiseau C, Harrigan RJ, Robert A et al (2012) Host and habitat specialization of avian malaria in Africa. Mol Ecol 21:431–441. https://doi.org/10.1111/j.1365-294X.2011.05341.x

    Article  PubMed  Google Scholar 

  58. Marroquin-Flores RA, Williamson JL, Chavez AN et al (2017) Diversity, abundance, and host relationships in the avian malaria community of New Mexico pine forests. PeerJ 5:e3700. https://doi.org/10.7717/peerj.3700

    Article  PubMed  PubMed Central  Google Scholar 

  59. Marzal A, Bensch S, Reviriego M et al (2008) Effects of malaria double infection in birds: one plus one is not two. J Evol Biol 21:979–987. https://doi.org/10.1111/j.1420-9101.2008.01545.x

    CAS  Article  PubMed  Google Scholar 

  60. McCormack JE, Bowen BS, Smith TB (2008) Integrating paleoecology and genetics of bird populations in two sky island archipelagos. BMC Biol 6:1–12. https://doi.org/10.1186/1741-7007-6-28

    CAS  Article  Google Scholar 

  61. Moens MAJ, Valkiūnas G, Paca A et al (2016) Parasite specialization in a unique habitat: hummingbirds as reservoirs of generalist blood parasites of Andean birds. J Anim Ecol 85:1234–1245. https://doi.org/10.1111/1365-2656.12550

    Article  PubMed  Google Scholar 

  62. Oksanen J, Blanchet FG, Friendly M et al (2018) vegan: Community Ecology Package. Version 2.5–2. https://CRAN.R-project.org/package=vegan.

  63. Olias P, Wegelin M, Zenker W et al (2011) Avian malaria deaths in parrots, Europe. Emerg Infect Dis 17:950–952. https://doi.org/10.1086/605025

    Article  PubMed  PubMed Central  Google Scholar 

  64. Olsson-Pons S, Clark NJ, Ishtiaq F, Clegg SM (2015) Differences in host species relationships and biogeographic influences produce contrasting patterns of prevalence, community composition and genetic structure in two genera of avian malaria parasites in southern Melanesia. J Anim Ecol 84:985–998. https://doi.org/10.1111/1365-2656.12354

    Article  PubMed  Google Scholar 

  65. Poulin R (1997) Species richness of parasite assemblages: evolution and patterns. Annu Rev Ecol Syst 28:341–358. https://doi.org/10.1146/annurev.ecolsys.28.1.341

    Article  Google Scholar 

  66. Poulin R (1999) The functional importance of parasites in animal communities: many roles at many levels? Int J Parasitol 29:903–914

    CAS  Article  Google Scholar 

  67. Poulin R (2003) The decay of similarity with geographical distance in parasite communities of vertebrate hosts. J Biogeogr 30:1609–1615

    Article  Google Scholar 

  68. Poulin R (2014) Parasite biodiversity revisited: frontiers and constraints. Int J Parasitol 44:581–589. https://doi.org/10.1016/j.ijpara.2014.02.003

    Article  PubMed  Google Scholar 

  69. R Core Team (2016) R: a language and environment for statistical computing. https://www.R-project.org/

  70. Rambaut A, Drummond AJ, Xie D et al (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Ricklefs RE (1992) Embryonic development period and the prevalence of avian blood parasites. Proc Natl Acad Sci 89:4722–4725. https://doi.org/10.1073/pnas.89.10.4722

    CAS  Article  PubMed  Google Scholar 

  72. Ricklefs R, Bermingham E (2008) The West Indies as a laboratory of biogeography and evolution. Philos Trans R Soc B Biol Sci 363:2393–2413. https://doi.org/10.1098/rstb.2007.2068

    Article  Google Scholar 

  73. Ricklefs RE, Swanson BL, Fallon SM et al (2005) Community relationships of avian malaria parasites in southern Missouri. Ecol Monogr 75:543–559. https://doi.org/10.1890/04-1820

    Article  Google Scholar 

  74. Ricklefs RE, Dodge Gray J, Latta SC, Svensson-Coelho M (2011) Distribution anomalies in avian haemosporidian parasites in the southern Lesser Antilles. J Avian Biol 42:570–584. https://doi.org/10.1111/j.1600-048X.2011.05404.x

    Article  Google Scholar 

  75. Ricklefs RE, Outlaw DC, Svensson-Coelho M et al (2014) Species formation by host shifting in avian malaria parasites. Proc Natl Acad Sci USA 111:14816–14821. https://doi.org/10.1073/pnas.1416356111

    CAS  Article  PubMed  Google Scholar 

  76. Ricklefs RE, Medeiros M, Ellis VA et al (2017) Avian migration and the distribution of malaria parasites in New World passerine birds. J Biogeogr 44:1113–1123. https://doi.org/10.1111/jbi.12928

    Article  Google Scholar 

  77. Roden VJ, Kocsis ÁT, Zuschin M, Kiessling W (2018) Reliable estimates of beta diversity with incomplete sampling. Ecology 99:1051–1062. https://doi.org/10.1002/ecy.2201

    Article  PubMed  Google Scholar 

  78. Scaglione FE, Cannizzo FT, Pregel P et al (2016) Blood parasites in hooded crows (Corvus corone cornix) in Northwest Italy. Veterinaria Italiana 52:111–116. https://doi.org/10.12834/VetIt.110.307.2

    Article  PubMed  Google Scholar 

  79. Schmid S, Fachet K, Dinkel A et al (2017) Carrion crows (Corvuscorone) of southwest Germany: important hosts for haemosporidian parasites. Malaria J 16:1–12. https://doi.org/10.1186/s12936-017-2023-5

    Article  Google Scholar 

  80. Scordato ESC, Kardish MR (2014) Prevalence and beta diversity in avian malaria communities: Host species is a better predictor than geography. J Anim Ecol 83:1387–1397. https://doi.org/10.1111/1365-2656.12246

    Article  PubMed  Google Scholar 

  81. Soares L, Latta SC, Ricklefs RE (2017) Dynamics of avian haemosporidian assemblages through millennial time scales inferred from insular biotas of the West Indies. Proc Natl Acad Sci 114:6635–6640. https://doi.org/10.1073/pnas.1702512114

    CAS  Article  PubMed  Google Scholar 

  82. Soares L, Latta SC, Ricklefs RE (2020a) Neotropical migratory and resident birds occurring in sympatry during winter have distinct haemosporidian parasite assemblages. J Biogeogr 47:748–759. https://doi.org/10.1111/jbi.13760

    Article  Google Scholar 

  83. Soares L, Young EI, Ricklefs RE (2020b) Haemosporidian parasites of resident and wintering migratory birds in The Bahamas. Parasitol Res 119:1563–1572. https://doi.org/10.1007/s00436-020-06646-y

    Article  PubMed  Google Scholar 

  84. Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31:67–80. https://doi.org/10.1016/j.tree.2015.11.005

    Article  PubMed  Google Scholar 

  85. Spellman GM, Klicka J (2006) Testing hypotheses of Pleistocene population history using coalescent simulations: phylogeography of the pygmy nuthatch (Sitta pygmaea). Proc R Soc B Biol Sci 273:3057–3063. https://doi.org/10.1098/rspb.2006.3682

    CAS  Article  Google Scholar 

  86. Stier AC, Bolker BM, Osenberg CW (2016) Using rarefaction to isolate the effects of patch size and sampling effort on beta diversity. Ecosphere 7:e01612. https://doi.org/10.1002/ecs2.1612

    Article  Google Scholar 

  87. Svensson-Coelho M, Ricklefs RE (2011) Host phylogeography and beta diversity in avian haemosporidian (Plasmodiidae) assemblages of the Lesser Antilles. J Anim Ecol 80:938–946. https://doi.org/10.1111/j.1365-2656.2011.01837.x

    Article  PubMed  Google Scholar 

  88. Svensson-Coelho M, Blake JG, Loiselle BA et al (2013) Diversity, prevalence, and host specificity of avian Plasmodium and Haemoproteus in a Western Amazon assemblage. Ornithol Monogr 76:1–47. https://doi.org/10.1525/om.2013.76.1.1.1

    Article  Google Scholar 

  89. Svensson-Coelho M, Silva GT, Santos SS et al (2016) Lower detection probability of avian plasmodium in blood compared to other tissues. J Parasitol 102:559–561. https://doi.org/10.1645/16-8

    CAS  Article  PubMed  Google Scholar 

  90. Thieltges DW, Ferguson MAD, Jones CS et al (2009) Distance decay of similarity among parasite communities of three marine invertebrate hosts. Oecologia 160:163–173. https://doi.org/10.1007/s00442-009-1276-2

    Article  PubMed  Google Scholar 

  91. Thornhill R, Fincher CL (2013) The parasite-driven-wedge model of parapatric speciation. J Zool 291:23–33. https://doi.org/10.1111/jzo.12070

    Article  Google Scholar 

  92. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton

    Google Scholar 

  93. van Riper C, van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344. https://doi.org/10.2307/1942550

    Article  Google Scholar 

  94. van Rooyen J, Lalubin F, Glaizot O, Christe P (2013) Altitudinal variation in haemosporidian parasite distribution in great tit populations. Paras Vect 6:1–10. https://doi.org/10.1186/1756-3305-6-139

    Article  Google Scholar 

  95. Waldenström J, Bensch S, Hasselquist D, Östman Ö (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194. https://doi.org/10.1645/GE-3221RN

    Article  PubMed  Google Scholar 

  96. Walther EL, Carlson JS, Cornel A et al (2016) First molecular study of prevalence and diversity of avian haemosporidia in a central California songbird community. J Ornithol 157:549–564. https://doi.org/10.1007/s10336-015-1301-7

    Article  Google Scholar 

  97. Warburton EM, Kohler SL, Vonhof MJ (2016) Patterns of parasite community dissimilarity: the significant role of land use and lack of distance-decay in a bat-helminth system. Oikos 125:374–385. https://doi.org/10.1111/oik.02313

    Article  Google Scholar 

  98. Warner RE (1968) The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70:101–120. https://doi.org/10.2307/1365954

    Article  Google Scholar 

  99. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

    Article  Google Scholar 

  100. Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338. https://doi.org/10.2307/1943563

    Article  Google Scholar 

  101. Whittaker RH (1972) Evolution and the measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  102. Williams PH (1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proc R Soc B Biol Sci 263:579–588. https://doi.org/10.1098/rspb.1996.0087

    Article  Google Scholar 

  103. Williamson JL, Wolf CJ, Barrow LN et al (2019) Ecology, not distance, explains community composition in parasites of sky-island Audubon’s Warblers. Int J Parasitol 49:437–448. https://doi.org/10.1016/j.ijpara.2018.11.012

    Article  PubMed  Google Scholar 

  104. Woolhouse M, Gaunt E (2007) Ecological origins of novel human pathogens. Crit Rev Microbiol 33:231–242. https://doi.org/10.1080/10408410701647560

    Article  PubMed  Google Scholar 

  105. Zhou J, Jiang Y-H, Deng Y et al (2013) Random sampling process leads to overestimation of Beta diversity of microbial communities. mBio 4:e00324-e413. https://doi.org/10.1128/mBio.00324-13.Editor

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Michael Andersen, Sara Brant, Mariel Campbell, Joseph Manthey, Moses Michelsohn, and George Rosenberg. This work was supported by the Bureau of Land Management Rio Puerco Field Office (via the Colorado Plateau Cooperative Ecosystems Studies Unit agreement) and NSF DEB-1146491. SMB, RMF, and TEM were supported by PREP/FlyBase Fellowships (NIH 5R25HG007630) and LNB was supported by an NSF Postdoctoral Research Fellowship in Biology (NSF DBI-1611710).

Author information

Affiliations

Authors

Contributions

LNB, SMB, and CCW conceived the ideas; LNB, SMB, JLW, JEF, MJB, SSB, ANC, CRG, SCG, ABJ, XMM, RMF, TEM, JMM, and CCW conducted fieldwork and generated data; LNB, SMB, PAC, JLW, DLW, JEF, RMF, and JEM conducted molecular work and microscopy; LNB, SMB, PAC, and JLW analyzed the data, and LNB and CCW wrote the manuscript.

Corresponding author

Correspondence to Christopher C. Witt.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All applicable institutional and national guidelines for the care and use of animals were followed.

Additional information

Communicated by Seth Newsome.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 169 KB)

Supplementary file 2 (DOCX 671 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrow, L.N., Bauernfeind, S.M., Cruz, P.A. et al. Detecting turnover among complex communities using null models: a case study with sky-island haemosporidian parasites. Oecologia 195, 435–451 (2021). https://doi.org/10.1007/s00442-021-04854-6

Download citation

Keywords

  • Avian malaria
  • Beta diversity
  • Parahaemoproteus
  • Plasmodium
  • Leucocytozoon