Demography, genetics, and decline of a spatially structured population of lekking bird

Abstract

Understanding the mechanisms underlying population decline is a critical challenge for conservation biologists. Both deterministic (e.g. habitat loss, fragmentation, and Allee effect) and stochastic (i.e. demographic and environmental stochasticity) demographic processes are involved in population decline. Simultaneously, a decrease of population size has far-reaching consequences for genetics of populations by increasing the risk of inbreeding and the strength of genetic drift, which together inevitably results in a loss of genetic diversity and a reduced effective population size (\(N_{{\text{e}}}\)). These genetic factors may retroactively affect vital rates (a phenomenon coined ‘inbreeding depression’), reduce population growth, and accelerate demographic decline. To date, most studies that have examined the demographic and genetic processes driving the decline of wild populations have neglected their spatial structure. In this study, we examined demographic and genetic factors involved in the decline of a spatially structured population of a lekking bird, the western capercaillie (Tetrao urogallus). To address this issue, we collected capture-recapture and genetic data over a 6-years period in the Vosges Mountains (France). Our study showed that the population of T. urogallus experienced a severe decline between 2010 and 2015. We did not detect any Allee effect on survival and recruitment. By contrast, individuals of both sexes dispersed to avoid small subpopulations, thus suggesting a potential behavioral response to a mate finding Allee effect. In parallel to this demographic decline, the population showed low levels of genetic diversity, high inbreeding and low effective population sizes at both subpopulation and population levels. Despite this, we did not detect evidence of inbreeding depression: neither adult survival nor recruitment were affected by individual inbreeding level. Our study underlines the benefit from combining demographic and genetic approaches to investigate processes that are involved in population decline.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ackerman MW, Hand BK, Waples RK, Luikart G, Waples RS, Steele CA, Garner BA, McCane J, Campbell MR (2017) Effective number of breeders from sibship reconstruction: empirical evaluations using hatchery steelhead. Evol Appl 10:146–160

    PubMed  Google Scholar 

  2. Alatalo RV, Höglund J, Lundberg A, Sutherland WJ (1992) Evolution of black grouse leks: female preferences benefit males in larger leks. Behav Ecol 3:53–59

    Google Scholar 

  3. Armbruster P, Reed DH (2005) Inbreeding depression in benign and stressful environments. Heredity 95:235–242

    CAS  PubMed  Google Scholar 

  4. Ballou J, Ralls K (1982) Inbreeding and juvenile mortality in small populations of ungulates: a detailed analysis. Biol Cons 24:239–272

    Google Scholar 

  5. Beehler BM, Foster MS (1988) Hotshots, hotspots, and female preference in the organization of lek mating systems. Am Nat 131:203–219

    Google Scholar 

  6. Benton TG, Bowler DE (2012) Linking dispersal to spatial dynamics. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 251–265

    Google Scholar 

  7. Borchers DL, Zucchini W, Fewster RM (1998) Mark-recapture models for line transect surveys. Biometrics 54:1207–1220

    Google Scholar 

  8. Botsford LW, Wainwright TC, Smith JT, Mastrup S, Lott DF (1988) Population dynamics of California quail related to meteorological conditions. J Wildl Manag 52:469–477

    Google Scholar 

  9. Bradbury JW, Gibson RM (1983) Leks and mate choice. In: Bateson P (ed) Mate choice. Cambridge University Press, Cambridge, pp 109–138

    Google Scholar 

  10. Briskie JV, Mackintosh M (2004) Hatching failure increases with severity of population bottlenecks in birds. Proc Natl Acad Sci 101:558–561

    CAS  PubMed  Google Scholar 

  11. Brittain S, Böhning D (2009) Estimators in capture–recapture studies with two sources. Adv Stat Anal 93:23–47

    Google Scholar 

  12. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Socio Methods Res 33:261–304

    Google Scholar 

  13. Cayuela H, Pradel R, Joly P, Besnard A (2017) Analysing movement behaviour and dynamic space-use strategies among habitats using multi-event capture-recapture modelling. Methods Ecol Evol 8:1124–1132

    Google Scholar 

  14. Cayuela H, Rougemont Q, Prunier JG, Moore JS, Clobert J, Besnard A, Bernatchez L (2018) Demographic and genetic approaches to study dispersal in wild animal populations: a methodological review. Mol Ecol 27:3976–4010

    PubMed  Google Scholar 

  15. Cayuela H, Pradel R, Joly P, Bonnaire E, Besnard A (2018) Estimating dispersal in spatiotemporally variable environments using multievent capture–recapture modeling. Ecology 99:1150–1163

    PubMed  Google Scholar 

  16. Cayuela H, Boualit L, Laporte M, Prunier JG, Foletti F, Clobert J, Jacob G (2019) Kin-dependent dispersal influences relatedness and genetic structuring in a lek system. Oecologia 191:97–112

    PubMed  Google Scholar 

  17. Choquet R, Rouan L, Pradel R (2009) Program E-SURGE: a software application for fitting multievent models. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer, US, pp 845–865

    Google Scholar 

  18. Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209

    PubMed  Google Scholar 

  19. Coulon A (2010) GENHET: an easy-to-use R function to estimate individual heterozygosity. Mol Ecol Resour 10:167–169

    CAS  PubMed  Google Scholar 

  20. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14:405–410

    CAS  PubMed  Google Scholar 

  21. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260

    PubMed  Google Scholar 

  22. Elgar MA, Clode D (2001) Inbreeding and extinction in island populations: a cautionary note. Conserv Biol 15:284–286

    Google Scholar 

  23. Engen S, Lande R, Saether BE (2003) Demographic stochasticity and Allee effects in populations with two sexes. Ecology 84:2378–2386

    Google Scholar 

  24. Engen S, Lande R, Saether BE (2005) Effective size of a fluctuating age-structured population. Genetics 170:941–954

    PubMed  PubMed Central  Google Scholar 

  25. Fox CW, Reed DH (2011) Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution 65:246–258

    PubMed  Google Scholar 

  26. Frankham R (2005) Genetics and extinction. Biol Cons 126:131–140

    Google Scholar 

  27. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  28. Gaillard JM, Yoccoz NG (2003) Temporal variation in survival of mammals: a case of environmental canalization? Ecology 84:3294–3306

    Google Scholar 

  29. Gascoigne J, Berec L, Gregory S, Courchamp F (2009) Dangerously few liaisons: a review of mate-finding Allee effects. Popul Ecol 51:355–372

    Google Scholar 

  30. Gibbs JP (2001) Demography versus habitat fragmentation as determinants of genetic variation in wild populations. Biol Cons 100:15–20

    Google Scholar 

  31. Gilpin M (ed) (2012) Metapopulation dynamics: empirical and theoretical investigations. Academic Press, New York

    Google Scholar 

  32. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  33. Grosbois V, Gimenez O, Gaillard JM, Pradel R, Barbraud C, Clobert J, Grosbois V, Gimenez O, Gaillard JM, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (2008) Assessing the impact of climate variation on survival in vertebrate populations. Biol Rev 83:357–399

    CAS  PubMed  Google Scholar 

  34. Grueber CE, Laws RJ, Nakagawa S, Jamieson IG (2010) Inbreeding depression accumulation across life-history stages of the endangered takahe. Conserv Biol 24:1617–1625

    PubMed  Google Scholar 

  35. Hanski I, Gilpin ME, McCauley DE (1997) Metapopulation biology, vol 454. Academic press, San Diego

    Google Scholar 

  36. Hartl DL, Clark AG (1989) Principles of population genetics, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  37. Hilde CH, Gamelon M, Sæther BE, Gaillard JM, Yoccoz NG, Pélabon C (2020) The demographic buffering hypothesis: evidence and challenges. Trends Ecol Evol 35:523–538

    PubMed  Google Scholar 

  38. Hill MF, Hastings A, Botsford LW (2002) The effects of small dispersal rates on extinction times in structured metapopulation models. Am Nat 160:389–402

    PubMed  Google Scholar 

  39. Höglund J, Alatalo RV, Lundberg A, RintamÎki PT, Lindell J (1999) Microsatellite markers reveal the potential for kin selection on black grouse leks. Proc R Soc Lond B Biol Sci 266:813–816

    Google Scholar 

  40. Höglund J, Piertney SB, Alatalo RV, Lindell J, Lundberg A, Rintamäki PT (2002) Inbreeding depression and male fitness in black grouse. Proc R Soc Lond B Biol Sci 269:711–715

    Google Scholar 

  41. Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47:663–685

    Google Scholar 

  42. Huggins R, Hwang WH (2011) A review of the use of conditional likelihood in capture-recapture experiments. Int Stat Rev 79:385–400

    Google Scholar 

  43. Isomursu M, Rätti O, Liukkonen-Anttila T, Helle P (2012) Susceptibility to intestinal parasites and juvenile survival are correlated with multilocus microsatellite heterozygosity in the Capercaillie (Tetrao urogallus). Ornis Fennica 89:109–119

    Google Scholar 

  44. IUCN 2018. The IUCN Red List of Threatened Species. Version 2018-1

  45. Jaquiéry J, Guillaume F, Perrin N (2009) Predicting the deleterious effects of mutation load in fragmented populations. Conserv Biol 23:207–218

    PubMed  Google Scholar 

  46. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    PubMed  Google Scholar 

  47. Keller LF (1998) Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution 52:240–250

    PubMed  Google Scholar 

  48. Kendall WL, Pollock KH, Brownie C (1995) A likelihood-based approach to capture-recapture estimation of demographic parameters under the robust design. Biometrics 51:293–308

    CAS  PubMed  Google Scholar 

  49. Kendall WL, Nichols JD, Hines JE (1997) Estimating temporary emigration using capture–recapture data with Pollock’s robust design. Ecology 78:563–578

    Google Scholar 

  50. Kervinen M, Alatalo RV, Lebigre C, Siitari H, Soulsbury CD (2012) Determinants of yearling male lekking effort and mating success in black grouse (Tetrao tetrix). Behav Ecol 23:1209–1217

    Google Scholar 

  51. Klinga P, Mikoláš M, Zhelev P, Höglund J, Paule L (2015) Genetic differentiation of western capercaillie in the Carpathian Mountains: the importance of post glacial expansions and habitat connectivity. Biol J Lin Soc 116:873–889

    Google Scholar 

  52. Lagrange P, Pradel R, Bélisle M, Gimenez O (2014) Estimating dispersal among numerous sites using capture–recapture data. Ecology 95:2316–2323

    PubMed  Google Scholar 

  53. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    CAS  PubMed  Google Scholar 

  54. Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    PubMed  Google Scholar 

  55. Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Popul Ecol 40:259–269

    Google Scholar 

  56. Lande R, Orzack SH (1988) Extinction dynamics of age-structured populations in a fluctuating environment. Proc Natl Acad Sci 85:7418–7421

    CAS  PubMed  Google Scholar 

  57. Landguth EL, Muhlfeld CC, Waples RS, Jones L, Lowe WH, Whited D, Lucotch J, Neville H, Luikart G (2014) Combining demographic and genetic factors to assess population vulnerability in stream species. Ecol Appl 24:1505–1524

    CAS  PubMed  Google Scholar 

  58. Lebigre C, Alatalo RV, Siitari H (2010) Female-biased dispersal alone can reduce the occurrence of inbreeding in black grouse (Tetrao tetrix). Mol Ecol 19:1929–1939

    CAS  PubMed  Google Scholar 

  59. Lindström J, Ranta E, Lindén H (1996) Large-scale synchrony in the dynamics of capercaillie, black grouse and hazel grouse populations in Finland. Oikos 76:221–227

    Google Scholar 

  60. Luque GM, Vayssade C, Facon B, Guillemaud T, Courchamp F, Fauvergue X (2016) The genetic Allee effect: a unified framework for the genetics and demography of small populations. Ecosphere 7:e01413

    Google Scholar 

  61. Mathieu-Bégné E, Loot G, Chevalier M, Paz-Vinas I, Blanchet S (2019) Demographic and genetic collapses in spatially structured populations: insights from a long-term survey in wild fish metapopulations. Oikos 128:196–207

    Google Scholar 

  62. Matthysen E (2012) Multicausality of dispersal: a review. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 3–18

    Google Scholar 

  63. McDonald TL, Amstrup SC (2001) Estimation of population size using open capture–recapture models. J Agric Biol Environ Stat 6:206

    Google Scholar 

  64. Meagher S, Penn DJ, Potts WK (2000) Male–male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci 97:3324–3329

    CAS  PubMed  Google Scholar 

  65. Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100

    CAS  PubMed  Google Scholar 

  66. Ménoni E, Montadert M, Leclercq B, Hurstel A, Dillet K (2012) Change in mating and breeding time of the Capercaillie in France, in relation to the change of the phenology of spring vegetation. In: 12th International Grouse Symposium, Matsumoto, 21–24th July 2012

  67. Moss R (1986) Rain, breeding success and distribution of capercaillie Tetrao urogallus and black grouse Tetrao tetrix in Scotland. Ibis 128:65–72

    Google Scholar 

  68. Moss R, Oswald J (1985) Population dynamics of capercaillie in a north-east Scottish glen. Ornis Scand 16:229–238

    Google Scholar 

  69. Moss R, Oswald J, Baines D (2001) Climate change and breeding success: decline of the capercaillie in Scotland. J Anim Ecol 70:47–61

    Google Scholar 

  70. Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406

    CAS  PubMed  Google Scholar 

  71. Nunney L, Campbell KA (1993) Assessing minimum viable population size: demography meets population genetics. Trends Ecol Evol 8:234–239

    CAS  PubMed  Google Scholar 

  72. O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Cons 133:42–51

    Google Scholar 

  73. Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    PubMed  Google Scholar 

  74. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    CAS  PubMed  Google Scholar 

  75. Pollock KH (1982) A capture-recapture design robust to unequal probability of capture. J Wildl Manag 46:752–757

    Google Scholar 

  76. Pradel R (1996) Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics 52:703–709

    Google Scholar 

  77. Pradel R (2005) Multievent: an extension of multistate capture–recapture models to uncertain states. Biometrics 61:442–447

    PubMed  Google Scholar 

  78. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B Biol Sci 267:1947–1952

    CAS  Google Scholar 

  79. Reed DH (2005) Relationship between population size and fitness. Conserv Biol 19:563–568

    Google Scholar 

  80. Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103

    CAS  PubMed  Google Scholar 

  81. Regnaut S, Christe P, Chapuisat M, Fumagalli L (2006) Genotyping faeces reveals facultative kin association on Capercaillie’s leks. Conserv Genet 7:665–674

    Google Scholar 

  82. Rintamäki PT, Höglund J, Karvonen E, Alatalo RV, Björklund N, Lundberg A, Rätti O, Vouti J (2000) Combs and sexual selection in black grouse (Tetrao tetrix). Behav Ecol 11:465–471

    Google Scholar 

  83. Rodríguez-Muñoz R, Mirol PM, Segelbacher G, Fernández A, Tregenza T (2007) Genetic differentiation of an endangered capercaillie (Tetrao urogallus) population at the Southern edge of the species range. Conserv Genet 8:659–670

    Google Scholar 

  84. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Google Scholar 

  85. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    PubMed  Google Scholar 

  86. Ryder TB, Tori WP, Blake JG, Loiselle BA, Parker PG (2009) Mate choice for genetic quality: a test of the heterozygosity and compatibility hypotheses in a lek-breeding bird. Behav Ecol 21:203–210

    Google Scholar 

  87. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491

    CAS  Google Scholar 

  88. Saniga M (2011) Why the capercaillie population (Tetrao urogallus L.) in mountain forests in the Central Slovakia decline? Folia Oecologica 38:110–117

    Google Scholar 

  89. Segelbacher G, Storch I (2002) Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline. Mol Ecol 11:1669–1677

    CAS  PubMed  Google Scholar 

  90. Segelbacher G, Höglund J, Storch I (2003) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780

    CAS  PubMed  Google Scholar 

  91. Selwood KE, McGeoch MA, Mac Nally R (2015) The effects of climate change and land-use change on demographic rates and population viability. Biol Rev 90:837–853

    PubMed  Google Scholar 

  92. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    CAS  PubMed  Google Scholar 

  93. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci 101:15261–15264

    CAS  PubMed  Google Scholar 

  94. Spottiswoode C, Møller AP (2004) Genetic similarity and hatching success in birds. Proc R Soc Lond B Biol Sci 271:267–272

    Google Scholar 

  95. Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14:401–405

    CAS  PubMed  Google Scholar 

  96. Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190

    Google Scholar 

  97. Stiver JR, Apa AD, Remington TE, Gibson RM (2008) Polygyny and female breeding failure reduce effective population size in the lekking Gunnison sage-grouse. Biol Cons 141:472–481

    Google Scholar 

  98. Storch I (1997) Male territoriality, female range use, and spatial organisation of capercaillie Tetrao urogallus leks. Wildl Biol 3:149–161

    Google Scholar 

  99. Storch I (2007) Grouse: Status Survey and Conservation Action Plan 2006–2010. 114 p. (Storch I, editor). Gland, Switzerland: IUCN and Fordingbridge, UK: World Pheasant Association.

  100. Stubberud MW, Myhre AM, Holand H, Kvalnes T, Ringsby TH, Sæther BE, Jensen H (2017) Sensitivity analysis of effective population size to demographic parameters in house sparrow populations. Mol Ecol 26:2449–2465

    PubMed  Google Scholar 

  101. Szűcs M, Melbourne BA, Tuff T, Weiss-Lehman C, Hufbauer RA (2017) Genetic and demographic founder effects have long-term fitness consequences for colonising populations. Ecol Lett 20:436–444

    PubMed  Google Scholar 

  102. Tanaka Y (1997) Extinction of populations due to inbreeding depression with demographic disturbances. Popul Ecol 39:57–66

    Google Scholar 

  103. Thomas CD, Kunin WE (1999) The spatial structure of populations. J Anim Ecol 68:647–657

    Google Scholar 

  104. Tournier E, Besnard A, Tournier V, Cayuela H (2017) Manipulating waterbody hydroperiod affects movement behaviour and occupancy dynamics in an amphibian. Freshw Biol 62:1768–1782

    CAS  Google Scholar 

  105. Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027

    CAS  PubMed  Google Scholar 

  106. Verkuil YI, Juillet C, Lank DB, Widemo F, Piersma T (2014) Genetic variation in nuclear and mitochondrial markers supports a large sex difference in lifetime reproductive skew in a lekking species. Ecol Evol 4:3626–3632

    PubMed  PubMed Central  Google Scholar 

  107. Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Waples RS, Yokota M (2006) Temporal estimates of effective population size in species with overlapping generations. Genetics 175:219–233

    PubMed  Google Scholar 

  109. Warren P, Atterton F, Anderle M, Baines D (2017) Expanding the range of black grouse Tetrao tetrix in northern England through translocating wild males. Wildl Biol 2017(SP1)

  110. Wegge P, Larsen BB (1987) Spacing of adult and subadult male Common capercaillie during the breeding-season. Auk 104:481–490

    Google Scholar 

  111. Wegge P, Larsen BB, Gjerde I, Kastdalen L, Rolstad J, Storaas T (1987) Natural mortality and predation of adult capercaillie in southeast Norway. In: Proceedings of the fourth international grouse symposium, Lam, World Pheasant Association, pp 49–56  

  112. Westemeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698

    CAS  PubMed  Google Scholar 

  113. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  114. Wootton JT, Pfister CA (2013) Experimental separation of genetic and demographic factors on extinction risk in wild populations. Ecology 94:2117–2123

    PubMed  Google Scholar 

  115. Young AG, Clarke GM, Cowlishaw G (eds) (2000) Genetics, demography and viability of fragmented populations (Vol 4). Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The genetic monitoring of capercaillie in the Vosges Mountains was funded by the Life+ Project “Des Forêts pour le Grand tetras”, by the Natura2000 network and by the regional programme of the Capercaillie National Action Plan initiated by the French Ministry of Environment. The project largely relied on the work of volunteers who collected samples during the six years of the study: Antoine Andre, Didier Arseguel, Samuel Audinot, Alix Badre, Etienne Barbier, Dominique Becker, Bernard Binetruy, Frédéric Bocquenet, Noémie Castaing, Sebastien Coulette, Stéphane Damervalle, Luc Dauphin, Richard Delaunay, Lucile Demaret, Michel Despoulin, Laurent Domergue, Vincent Drillon, Christian Dronneau, Fabien Dupont, Arnaud Foltzer, Patrick Foltzer, Marc Gehin, Cyril Gerard, Maxime Girardin, Remi Grandemange, Jean-Claude Gregy, Joaquim Hatton, Thibaut Hingray, Thierry Hue, Arnaud Hurstel, Jean-Nöel Journot, Fabien Kilque, Lydie Lallement, Christian Lamboley, Manuel Lembke, Jean-Michel Letz, Vincent Lis, Olivier Marchand, Paul Massard, Yvan Mougel, Michel Munier, Louis-Michel Nageleisen, Yvan Nicolas, Christian Oberle, Pascal Perrotey-Doridant, Christian Philipps, François Rey-Demaneuf, Dorian Toussaint, Jean-Marie Triboulot, Bruno Vaxelaire, Laurent Verard, Jean-Lou Zimmermann, and Alice Zimmermann. During the writing of the manuscript, Hugo Cayuela was supported by the Swiss National Science Foundation (Grant Number 31003A_182265).

Author information

Affiliations

Authors

Contributions

HC and GJ conceived and designed the study. FG and AL collected the data. HC, JGP, ML, JG, FF, and BL managed and analyzed the genetic and demographic data. HC wrote the manuscript; other authors provided editorial advice.

Corresponding author

Correspondence to Hugo Cayuela.

Additional information

Communicated by Hannu Pöysä.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cayuela, H., Prunier, J.G., Laporte, M. et al. Demography, genetics, and decline of a spatially structured population of lekking bird. Oecologia 195, 117–129 (2021). https://doi.org/10.1007/s00442-020-04808-4

Download citation

Keywords

  • Population decline
  • Inbreeding depression
  • Dispersal
  • Gene flow
  • Effective population size