Akimoto A, Hirano YM, Sakai A, Yusa Y (2014) Relative importance and interactive effects of photosynthesis and food in two solar-powered sea slugs. Mar Biol 161:1095–1102. https://doi.org/10.1007/s00227-014-2402-1
CAS
Article
Google Scholar
Baumgartner FB, Pavia H, Toth GB (2015) Acquired phototrophy through retention of functional chloroplasts increases growth efficiency of the sea slug Elysia viridis. PLoS ONE 10:e0120874. https://doi.org/10.1371/journal.pone.0120874
CAS
Article
Google Scholar
Bernhard JM, Bowser SS (1999) Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth Sci Rev 46:149–165. https://doi.org/10.1016/S0012-8252(99)00017-3
CAS
Article
Google Scholar
Bhattacharya D, Pelletreau KN, Price DC, Sarver KE, Rumpho ME (2013) Genome analysis of Elysia chlorotica egg DNA provides no evidence for horizontal gene transfer into the germ line of this kleptoplastic mollusc. Mol Biol Evol 30:1843–1852. https://doi.org/10.1093/molbev/mst084
CAS
Article
Google Scholar
Cartaxana P, Trampe E, Kühl M, Cruz S (2017) Kleptoplast photosynthesis is nutritionally relevant in the sea slug Elysia viridis. Sci Rep 7:7714. https://doi.org/10.1038/s41598-017-08002-0
CAS
Article
Google Scholar
Cartaxana P, Rey F, Ribeiro M, Moreira ASP, Domingues MRM, Calado RC, Cruz S (2019) Nutritional state determines reproductive investment in the mixotrophic sea slugs Elysia viridis. Mar Ecol Prog Ser 611:167–177. https://doi.org/10.3354/meps12866
CAS
Article
Google Scholar
Christa G, Zimorski V, Woehle C, Tielens AGM, Wägele H, Martin WF, Gould SB (2013) Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive. Proc R Soc B Biol Sci 281:20132493. https://doi.org/10.1098/rspb.2013.2493
CAS
Article
Google Scholar
Christa G, Händeler K, Kück P, Vleugels M, Franken J, Karmeinski D, Wägele H (2014) Phylogenetic evidence for multiple independent origins of functional kleptoplasty in Sacoglossa (Heterobranchia, Gastropoda). Org Divers Evol 15:23–36. https://doi.org/10.1007/s13127-014-0189-z
Article
Google Scholar
Clark KB, Busacca M, Stirts H (1979) Nutritional aspects of the development of the ascoglossan, Elysia cauze. In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, pp 11–24
Google Scholar
Clark KB, Jensen KR, Stirts HM (1990) Survey for functional kleptoplasty among West Atlantic Ascoglossa (= Sacoglossa) (Mollusca: Opistobranchia). Veliger 33:339–345
Google Scholar
Curtis NE, Schwartz JA, Pierce SK (2010) Ultrastructure of sequestered chloroplasts in sacoglossan gastropods with differing abilities for plastid uptake and maintenance. Invertebr Biol 129:297–308. https://doi.org/10.1111/j.1744-7410.2010.00206.x
Article
Google Scholar
de Vries J, Christa G, Gould SB (2014) Plastid survival in the cytosol of animal cells. Trend Plant Sci 19:347–350. https://doi.org/10.1016/j.tplants.2014.03.010
CAS
Article
Google Scholar
Donohoo SA, Wade RM, Sherwood AR (2020) Finding the sweet spot: sub-ambient light increases fitness and kleptoplast survival in the sea slug Plakobranchus cf. ianthobaptus Gould, 1852. Biol Bull 238:154–166. https://doi.org/10.1086/709371
Article
Google Scholar
Dunlap MFS (1975) Symbiosis between algal chloroplasts and the mollusk Plakobranchus ocellatus van Hasselt (Sacoglossa: Opisthobranchia). PhD dissertation, University of Hawaii
Evertsen J, Johnsen G (2009) In vivo and in vitro differences in chloroplast functionality in the two north Atlantic sacoglossans (Gastropoda, Opisthobranchia) Placida dendritica and Elysia viridis. Mar Biol 156:847–859. https://doi.org/10.1007/s00227-009-1128-y
CAS
Article
Google Scholar
Evertsen J, Burghardt I, Johnsen G, Wägele H (2007) Retention of functional chloroplasts in some sacoglossans from the Indo-Pacific and Mediterranean. Mar Biol 151:2159–2166. https://doi.org/10.1007/s00227-007-0648-6
Article
Google Scholar
Fleming IA, Gross MR (1990) Latitudinal clines: a trade-off between egg number and size in Pacific salmon. Ecology 71:1–11. https://doi.org/10.2307/1940241
Article
Google Scholar
Gast RJ, Moran DM, Dennett MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol 9:39–45. https://doi.org/10.1111/j.1462-2920.2006.01109.x
CAS
Article
Google Scholar
Giménez Casalduero F, Muniain C (2008) The role of kleptoplasts in the survival rates of Elysia timida (Risso, 1818): (Sacoglossa: Opisthobranchia) during periods of food shortage. J Exp Mar Biol Ecol 357:181–187. https://doi.org/10.1016/j.jembe.2008.01.020
Article
Google Scholar
Greene RW (1970) Symbiosis in sacoglossan opisthobranchs: translocation of photosynthetic products from chloroplast to host tissue. Malacologia 10:357–368. https://doi.org/10.1007/BF00348288
Article
Google Scholar
Händeler K, Grzymbowski YP, Krug P, Wägele H (2009) Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life. Front Zool 6:1–18. https://doi.org/10.1186/1742-9994-6-28
CAS
Article
Google Scholar
Haramaty L (1991) Reproduction effort in the nudibranch Phestilla sibogae: calorimetric analysis of food and eggs. Pac Sci 45:257–262
Google Scholar
Hinde R, Smith DC (1975) The role of photosynthesis in the nutrition of the mollusc Elysia viridis. Biol J Linn Soc 7:161–171. https://doi.org/10.1111/j.1095-8312.1975.tb00738.x
Article
Google Scholar
Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426–428. https://doi.org/10.1038/nature05496
CAS
Article
Google Scholar
Krug PJ, Vendetti JE, Ellingson RA, Trowbridge CD, Hirano YM, Trathen DY, Rodriguez AK, Swennen C, Wilson NG, Valdés ÁA (2015) Species selection favors dispersive life histories in sea slugs, but higher per-offspring investment drives shifts to short-lived larvae. Syst Biol 64:983–999. https://doi.org/10.1093/sysbio/syv046
CAS
Article
Google Scholar
Laetz EMJ, Moris VC, Moritz L, Haubrich AN, Wägele H (2017) Photosynthate accumulation in solar-powered sea slugs – starving slugs survive due to accumulated starch reserves. Front Zool 14:1–9. https://doi.org/10.1186/s12983-016-0186-5
CAS
Article
Google Scholar
Leuzinger S, Willis BL, Anthony KR (2012) Energy allocation in a reef coral under varying resource availability. Mar Biol 159:177–186. https://doi.org/10.1007/s00227-011-1797-1
Article
Google Scholar
Maeda T, Hirose E, Chikaraishi Y, Kawato M, Takishita K, Yoshida T, Verbruggen H, Tanaka J, Shimamura S, Takaki Y, Tsuchiya M, Iwai K, Maruyama T (2012) Algivore or phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS ONE 7:e42024. https://doi.org/10.1371/journal.pone.0042024
CAS
Article
Google Scholar
Marín A, Ros JD (1992) Dynamics of a peculiar plant – herbivore relationship: the photosynthetic ascoglossan Elysia timida and the chlorophycean Acetabularia acetabulum. Mar Biol 112:677–682. https://doi.org/10.1007/BF00346186
Article
Google Scholar
Middlebrooks ML, Pierce SK, Bell SS (2011) Foraging behavior under starvation conditions is altered via photosynthesis by the marine gastropod, Elysia clarki. PLoS ONE 6:e22162. https://doi.org/10.1371/journal.pone.0022162
CAS
Article
Google Scholar
Pelletreau KN, Bhattacharya D, Price DC, Worful JM, Moustafa A, Rumpho ME (2011) Sea slug kleptoplasty and plastid maintenance in a metazoan. Plant Physiol 155:1561–1565. https://doi.org/10.1104/pp.111.174078
CAS
Article
Google Scholar
Pelletreau KN, Weber APM, Weber KL, Rumpho ME (2014) Lipid accumulation during the establishment of kleptoplasty in Elysia chlorotica. PLoS ONE 9:e97477. https://doi.org/10.1371/journal.pone.0097477
CAS
Article
Google Scholar
Pierce SK, Fang X, Schwartz JA, Jiang X, Zhao W, Curtis NE, Kocot KM, Yang B, Wang J (2012) Transcriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic sea slug, Elysia chlorotica. Mol Biol Evol 29:1545–1556. https://doi.org/10.1093/molbev/msr316
CAS
Article
Google Scholar
Rauch C, Tielens AG, Serôdio J, Gould SB, Christa G (2018) The ability to incorporate functional plastids by the sea slug Elysia viridis is governed by its food source. Mar Biol 165:82. https://doi.org/10.1007/s00227-018-3329-8
Article
Google Scholar
Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa A, Manhart JR (2008) Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Nat Acad Sci USA 105:17867–17871. https://doi.org/10.1073/pnas.0804968105
Article
Google Scholar
Scheltema RS (1986) On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull Mar Sci 39:290–322
Google Scholar
Schwartz JA, Curtis NE, Pierce SK (2010) Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evol Biol 37:29–37. https://doi.org/10.1007/s11692-010-9079-2
Article
Google Scholar
Trench RK, Greene RW, Bystrom BG (1969) Chloroplasts as functional organelles in animal tissues. J Cell Biol 42:404–417. https://doi.org/10.1083/jcb.42.2.404
CAS
Article
Google Scholar
Trowbridge CD, Hirano YJ, Hirano YM (2008) Sacoglossan opisthobranchs associated with the green macroalgae Codium spp. on Pacific rocky shores of Japan. Venus 66:175–190
Google Scholar
VanSteenkiste NWL, Stephenson I, Herranz M, Husnik F, Keeling PJ, Leander BS (2019) A new case of kleptoplasty in animals: marine flatworms steal functional plastids from diatoms. Sci Adv 5:eaaw4337. https://doi.org/10.1126/sciadv.aaw4337
CAS
Article
Google Scholar
Vendetti JE, Trowbridge CD, Krug PJ (2012) Poecilogony and population genetic structure in Elysia pusilla (Heterobranchia: Sacoglossa), and reproductive data for five sacoglossans that express dimorphisms in larval development. Integr Comp Biol 52:138–150. https://doi.org/10.1093/icb/ics077
Article
Google Scholar
Wägele H, Deusch O, Händeler K, Martin R, Schmitt V, Christa G, Pinzger B, Gould SB, Dagan T, Klussmann-Kolb A, Martin W (2011) Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Mol Biol Evol 2:699–706. https://doi.org/10.1093/molbev/msq239
CAS
Article
Google Scholar
Williams TD (2001) Experimental manipulation of female reproduction reveals an intraspecific egg size clutch size trade-off. Proc R Soc Lond B 268:423–428. https://doi.org/10.1098/rspb.2000.1374
CAS
Article
Google Scholar
Yamamoto S, Hirano YM, Hirano YJ, Trowbridge CD, Akimoto A, Sakai A, Yusa Y (2013) Effects of photosynthesis on the survival and weight retention of two kleptoplastic sacoglossan opisthobranchs. J Mar Biol Assoc UK 93:209–215. https://doi.org/10.1017/S0025315412000628
Article
Google Scholar