Flexible habitat use in a migratory songbird expanding across a human-modified landscape: is it adaptive?

Abstract

Behavioural plasticity during habitat selection plays a key role in determining whether organisms may thrive under human-induced rapid environmental changes. As organisms rely on environmental cues to make decisions, these behavioural responses may be maladaptive. We studied the European stonechat Saxicola torquatus as a model open-habitat bird species breeding in three structurally different land-use types generated by agriculture and forestry activities. In this mosaic landscape, we compared the relative attractiveness and the breeding habitat quality of intensive grassland, Christmas tree plantations and clear-cut patches in plantation forests to test whether habitat selection was adaptive. We examined the settlement pattern of territorial males to evaluate habitat preference. We recorded key parameters reflecting reproductive performances, adult and first-year survival to estimate the individual fitness of the birds and assess the quality of the different land-use types for breeding. Stonechats preferentially settled in clear-cut patches, but their fitness was not found to be markedly different in comparison with the other occupied habitats. Although they produced slightly lower-quality offspring in clear-cut patches, we did not find a negative consequence on first-year survival probabilities or any among-habitat differences in adult survival. With our analysis integrating multiple components of individual fitness, we show that all occupied land-use types are similarly rewarding for the breeding stonechats. Our study shows that some species can benefit from novel land-use types emerging in the landscape as a result of human activities. Flexible habitat selection in the stonechat has most probably contributed to its recent population increase in Western Europe.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahlering MA, Arlt D, Betts MG et al (2010) Research needs and recommendations for the use of conspecific-attraction methods in the conservation of migratory songbirds. Condor 112:252–264. https://doi.org/10.1525/cond.2010.090239

    Article  Google Scholar 

  2. Alderweireld M, Burnay F, Pitchugin M, Lecomte H (2015) Inventaire forestier wallon. Résultats 1994–2012. SPW, DGO3, DNF, Direction des Ressources forestières, Jambes, Belgium

  3. Arlt D, Pärt T (2007) Nonideal breeding habitat selection: a mismatch between preference and fitness. Ecology 88:792–801. https://doi.org/10.1890/06-0574

    Article  PubMed  Google Scholar 

  4. Arlt D, Forslund P, Jeppsson T, Pärt T (2008) Habitat-specific population growth of a farmland bird. PLoS ONE 3:e3006. https://doi.org/10.1371/journal.pone.0003006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  6. Bellamy PE, Croxton PJ, Heard MS et al (2009) The impact of growing miscanthus for biomass on farmland bird populations. Biomass Bioenerg 33:191–199. https://doi.org/10.1016/j.biombioe.2008.07.001

    Article  Google Scholar 

  7. Berg Å (2002) Breeding birds in short-rotation coppices on farmland in central Sweden—the importance of Salix height and adjacent habitats. Agric Ecosyst Environ 90:265–276. https://doi.org/10.1016/S0167-8809(01)00212-2

    Article  Google Scholar 

  8. Calladine J, Bray J, Broome A, Fuller RJ (2015) Comparison of breeding bird assemblages in conifer plantations managed by continuous cover forestry and clearfelling. For Ecol Manage 344:20–29. https://doi.org/10.1016/j.foreco.2015.02.017

    Article  Google Scholar 

  9. Chalfoun AD, Martin TE (2007) Assessments of habitat preferences and quality depend on spatial scale and metrics of fitness. J Appl Ecol 44:983–992. https://doi.org/10.1111/j.1365-2664.2007.01352.x

    Article  Google Scholar 

  10. Christensen CJ (2015) The European Christmas tree industry—aspects of markets and production. In: Talgø V, Fløistad IS (eds) The 12th International Christmas Tree Research and Extension Conference. NIBIO, Honne, Norway

  11. Davies JM, Restani M (2006) Survival and movements of juvenile Burrowing Owls during the postfledging period. Condor 108:282. https://doi.org/10.1650/0010-5422(2006)108[282:SAMOJB]2.0.CO;2

    Article  Google Scholar 

  12. de Valpine P, Turek D, Paciorek CJ et al (2017) Programming with models: writing statistical algorithms for general model structures with NIMBLE. J Comput Graph Stat 26:403–413. https://doi.org/10.1080/10618600.2016.1172487

    Article  Google Scholar 

  13. De Warnaffe GDB, Deconchat M (2008) Impact of four silvicultural systems on birds in the Belgian Ardenne: implications for biodiversity in plantation forests. Biodivers Conserv 17:1041–1055. https://doi.org/10.1007/s10531-008-9364-x

    Article  Google Scholar 

  14. Derouaux A, Paquet J (2018) L’évolution préocucupante des populations d’oiseaux nicheurs en Wallonie: 28 ans de surveillance de l’avifaune commune. Aves 55:1–31

    Google Scholar 

  15. Di Maggio R, Campobello D, Tavecchia G, Sarà M (2016) Habitat- and density-dependent demography of a colonial raptor in Mediterranean agro-ecosystems. Biol Conserv 193:116–123. https://doi.org/10.1016/j.biocon.2015.11.016

    Article  Google Scholar 

  16. Ducatez S, Sol D, Sayol F, Lefebvre L (2020) Behavioural plasticity is associated with reduced extinction risk in birds. Nat Ecol Evol. https://doi.org/10.1038/s41559-020-1168-8

    Article  PubMed  Google Scholar 

  17. Fartmann T, Kämpfer S, Brüggeshemke J et al (2018) Landscape-scale effects of Christmas-tree plantations in an intensively used low-mountain landscape—applying breeding bird assemblages as indicators. Ecol Indic 94:409–419. https://doi.org/10.1016/j.ecolind.2018.07.006

    Article  Google Scholar 

  18. Fox J, Weisberg S (2011) An {R} Companion to Applied Regression, Second Edition.

  19. Fretwell SD, Lucas HL (1969) On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor 19:16–36. https://doi.org/10.1007/BF01601953

    Article  Google Scholar 

  20. Fuller RJ (2012) The bird and its habitat: an overview of concepts. In: Fuller RJ (ed) Birds and Habitat. Relationships in changing landscapes. Cambridge University Press, Cambridge, UK, pp 3–36

    Chapter  Google Scholar 

  21. Fuller R, Glue D (1977) The breeding biology of the Stonechat and Whinchat. Bird Study 24:215–228. https://doi.org/10.1080/00063657709476561

    Article  Google Scholar 

  22. Gailly R, Paquet JY, Titeux N et al (2017) Effects of the conversion of intensive grasslands into Christmas tree plantations on bird assemblages. Agric Ecosyst Environ 247:91–97. https://doi.org/10.1016/j.agee.2017.06.029

    Article  Google Scholar 

  23. Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim Res 35:37–58. https://doi.org/10.3354/cr00713

    Article  Google Scholar 

  24. Gregory RD, Skorpilova J, Vorisek P, Butler S (2019) An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol Indic 103:676–687. https://doi.org/10.1016/j.ecolind.2019.04.064

    Article  Google Scholar 

  25. Greig-Smith PW (1984) Seasonal changes in the use of nesting cover by stonechats Saxicola torquata. Ornis Scand 15:11–15. https://doi.org/10.2307/3675997

    Article  Google Scholar 

  26. Hale R, Swearer SE (2016) Ecological traps: current evidence and future directions. Proc R Soc B Biol Sci 283:20152647. https://doi.org/10.1098/rspb.2015.2647

    CAS  Article  Google Scholar 

  27. Hale R, Treml EA, Swearer SE (2015) Evaluating the metapopulation consequences of ecological traps. Proc R Soc B Biol Sci 282:20142930. https://doi.org/10.1098/rspb.2014.2930

    Article  Google Scholar 

  28. Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40:248–255. https://doi.org/10.1007/s13280-011-0147-3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Helm B, Fiedler W, Callion J (2006) Movements of European stonechats Saxicola torquata according to ringing recoveries. Ardea 94:33–44

    Google Scholar 

  30. Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29. https://doi.org/10.1111/j.1365-294X.2007.03428.x

    Article  PubMed  Google Scholar 

  31. Herrando S, Brotons L, Anton M et al (2016) Assessing impacts of land abandonment on Mediterranean biodiversity using indicators based on bird and butterfly monitoring data. Environ Conserv 43:69–78. https://doi.org/10.1017/S0376892915000260

    Article  Google Scholar 

  32. Hollander FA, Van Dyck H, San Martin G, Titeux N (2011) Maladaptive habitat selection of a migratory passerine bird in a human-modified landscape. PLoS ONE 6:e25703. https://doi.org/10.1371/journal.pone.0025703

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Hollander FA, Titeux N, van Dyck H (2012) Territorial resource valuation deviates from habitat quality in an ecologically trapped, long-distance migratory bird. Behav Ecol Sociobiol 66:777–783. https://doi.org/10.1007/s00265-012-1325-4

    Article  Google Scholar 

  34. Hollander FA, Titeux N, Walsdorff T et al (2015) Arthropods and novel bird habitats: do clear-cuts in spruce plantations provide similar food resources for insectivorous birds compared with farmland habitats? J Insect Conserv 19:1011–1020. https://doi.org/10.1007/s10841-015-9817-y

    Article  Google Scholar 

  35. Hollander FA, Titeux N, Holveck M-J, Van Dyck H (2017) Timing of breeding in an ecologically trapped bird. Am Nat 189:000–000. https://doi.org/10.1086/691329

    Article  Google Scholar 

  36. Johnson MD (2007) Measuring habitat quality: a review. Condor 109:489–504. https://doi.org/10.1650/8347.1

    Article  Google Scholar 

  37. Kentie R, Hooijmeijer JCEW, Trimbos KB et al (2013) Intensified agricultural use of grasslands reduces growth and survival of precocial shorebird chicks. J Appl Ecol 50:243–251. https://doi.org/10.1111/1365-2664.12028

    Article  Google Scholar 

  38. Knopff AA, Knopff KH, BoyceClair MSCCS (2014) Flexible habitat selection by cougars in response to anthropogenic development. Biol Conserv 178:136–145. https://doi.org/10.1016/j.biocon.2014.07.017

    Article  Google Scholar 

  39. Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950. https://doi.org/10.1046/j.1365-2656.1999.00343.x

    Article  Google Scholar 

  40. Kokko H, Sutherland WJ (2001) Ecological traps in changing environments: ecological and evolutionary consequences of a behaviourally mediated Allee effect. Evol Ecol Res 3:537–551

    Google Scholar 

  41. Kristan WBI (2003) The role of habitat selection behavior in population dynamics: source-sink systems and ecological traps. Oikos 103:457–468. https://doi.org/10.1034/j.1600-0706.2003.12192.x

    Article  Google Scholar 

  42. Lamb CT, Mowat G, McLellan BN et al (2017) Forbidden fruit: human settlement and abundant fruit create an ecological trap for an apex omnivore. J Anim Ecol 86:55–65. https://doi.org/10.1111/1365-2656.12589

    Article  PubMed  Google Scholar 

  43. Leston LFV, Rodewald AD (2006) Are urban forests ecological traps for understory birds? An examination using Northern cardinals. Biol Conserv 131:566–574. https://doi.org/10.1016/j.biocon.2006.03.003

    Article  Google Scholar 

  44. Lewandowski I (2016) The Role of Perennial Biomass Crops in a Growing Bioeconomy. In: Barth S, Murphy-Bokern D, Kalinina O, et al. (eds) Perennial Biomass Crops for a Resource-Constrained World. Springer, New York, pp 3–13

    Chapter  Google Scholar 

  45. Low M, Arlt D, Eggers S, Pärt T (2010) Habitat-specific differences in adult survival rates and its links to parental workload and on-nest predation. J Anim Ecol 79:214–224. https://doi.org/10.1111/j.1365-2656.2009.01595.x

    Article  PubMed  Google Scholar 

  46. Maxwell SL, Fuller RA, Brooks TM, Watson JEM (2016) Biodiversity: the ravages of guns, nets and bulldozers. Nature 536:143–145. https://doi.org/10.1038/536143a

    CAS  Article  PubMed  Google Scholar 

  47. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. https://doi.org/10.1016/S0169-5347(99)01679-1

    CAS  Article  PubMed  Google Scholar 

  48. Meyer LM, Schmidt KA, Robertson BA (2015) Evaluating exotic plants as evolutionary traps for nesting Veeries. Condor 117:320–327. https://doi.org/10.1650/CONDOR-14-101.1

    Article  Google Scholar 

  49. Morris DW (2003) Toward an ecological synthesis: a case for habitat selection. Oecologia 136:1–13. https://doi.org/10.1007/s00442-003-1241-4

    Article  PubMed  Google Scholar 

  50. Murray C, Minderman J, Allison J, Calladine J (2016) Vegetation structure influences foraging decisions in a declining grassland bird: the importance of fine-scale habitat and grazing regime. Bird Study 63:223–232. https://doi.org/10.1080/00063657.2016.1180342

    Article  Google Scholar 

  51. Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324

    CAS  Article  PubMed  Google Scholar 

  52. Newton I (2017) Farming and birds. William Collins, London, UK

    Google Scholar 

  53. Paquet J-Y (2010) Tarier pâtre Saxixola troquatus. In: Atlas des oiseaux nicheurs de Wallonie 2001-2007. Aves et Région wallonne, Gembloux, BE, pp 318–319

  54. Paquet J-Y, Vandevyvre X, Delahaye L, Rondeux J (2006) Bird assemblages in a mixed woodland–farmland landscape: the conservation value of silviculture-dependant open areas in plantation forest. For Ecol Manage 227:59–70. https://doi.org/10.1016/j.foreco.2006.02.009

    Article  Google Scholar 

  55. PECBMS (2019) European wild bird indicators, 2019 update. https://pecbms.info/trends-and-indicators/indicators/. Accessed 10 Apr 2020

  56. Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361. https://doi.org/10.1046/j.1461-0248.2000.00143.x

    Article  Google Scholar 

  57. R Core Team (2017) R: A language and environment for statistical computing

  58. Revaz E, Schaub M, Arlettaz R (2008) Foraging ecology and reproductive biology of the Stonechat Saxicola torquata: comparison between a revitalized, intensively cultivated and a historical, traditionally cultivated agro-ecosystem. J Ornithol 149:301–312. https://doi.org/10.1007/s10336-007-0269-3

    Article  Google Scholar 

  59. Robertson BA, Chalfoun AD (2016) Evolutionary traps as keys to understanding behavioral maladapation. Curr Opin Behav Sci 12:12–17. https://doi.org/10.1016/j.cobeha.2016.08.007

    Article  Google Scholar 

  60. Robertson BA, Hutto RL (2006) A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87:1075–1085

    Article  Google Scholar 

  61. Robertson BA, Rehage JS, Sih A (2013) Ecological novelty and the emergence of evolutionary traps. Trends Ecol Evol 28:552–560. https://doi.org/10.1016/j.tree.2013.04.004

    Article  PubMed  Google Scholar 

  62. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176. https://doi.org/10.1046/j.1365-2664.2002.00695.x

    Article  Google Scholar 

  63. Ronget V, Gaillard JM, Coulson T et al (2018) Causes and consequences of variation in offspring body mass: meta-analyses in birds and mammals. Biol Rev 93:1–27. https://doi.org/10.1111/brv.12329

    Article  PubMed  Google Scholar 

  64. Sage R, Cunningham M, Boatman N (2006) Birds in willow short-rotation coppice compared to other arable crops in central England and a review of bird census data from energy crops in the UK. Ibis 148:184–197. https://doi.org/10.1111/j.1474-919X.2006.00522.x

    Article  Google Scholar 

  65. Sage R, Cunningham M, Haughton AJ et al (2010) The environmental impacts of biomass crops: use by birds of miscanthus in summer and winter in southwestern England. Ibis 152:487–499. https://doi.org/10.1111/j.1474-919X.2010.01027.x

    Article  Google Scholar 

  66. Schaub M, Royle JA (2014) Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models. Methods Ecol Evol 5:1316–1326. https://doi.org/10.1111/2041-210X.12134

    Article  Google Scholar 

  67. Seward AM, Beale CM, Gilbert L et al (2013) The impact of increased food availability on survival of a long-distance migratory bird. Ecology 94:221–230. https://doi.org/10.1890/12-0121.1

    Article  PubMed  Google Scholar 

  68. Sih A (2013) Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim Behav 85:1077–1088. https://doi.org/10.1016/j.anbehav.2013.02.017

    Article  Google Scholar 

  69. Sih A, Ferrari MCO, Harris DJ (2011) Evolution and behavioural responses to human-induced rapid environmental change. Evol Appl 4:367–387. https://doi.org/10.1111/j.1752-4571.2010.00166.x

    Article  PubMed  PubMed Central  Google Scholar 

  70. Skagen SK, Yackel Adams AA (2011) Potential misuse of avian density as a conservation metric. Conserv Biol 25:48–55. https://doi.org/10.1111/j.1523-1739.2010.01571.x

    Article  PubMed  Google Scholar 

  71. Söderström B, Karlsson H (2011) Increased reproductive performance of Red-backed Shrikes Lanius collurio in forest clear-cuts. J Ornithol 152:313–318. https://doi.org/10.1007/s10336-010-0587-8

    Article  Google Scholar 

  72. SPF Economie (2017) Agriculture—Chiffres agricoles de 2016. https://statbel.fgov.be/fr/modules/publications/statistiques/economie/downloads/agriculture_-_chiffres_agricoles_de_2016.jsp. Accessed 4 Dec 2017

  73. Stamps J (2009) Chapter I.5: Habitat selection. In: Levin SA, Carpenter SR, Godfray HCJ, et al. (eds) The Princeton Guide to Ecology. Princeton University Press, pp 38–44

  74. Suárez-Seoane S, Álvarez-Martínez JM, Wintle BA et al (2017) Modelling the spatial variation of vital rates: an evaluation of the strengths and weaknesses of correlative species distribution models. Divers Distrib 23:841–853. https://doi.org/10.1111/ddi.12586

    Article  Google Scholar 

  75. Titeux N, Dufrene M, Radoux J et al (2007) Fitness-related parameters improve presence-only distribution modelling for conservation practice: the case of the red-backed shrike. Biol Conserv 138:207–223. https://doi.org/10.1016/j.biocon.2007.04.019

    Article  Google Scholar 

  76. Tome D, Denac D (2012) Survival and development of predator avoidance in the post-fledging period of the Whinchat (Saxicola rubetra): consequences for conservation measures. J Ornithol 153:131–138. https://doi.org/10.1007/s10336-011-0713-2

    Article  Google Scholar 

  77. Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  78. Urquhart E (2002) Stonechats. A Guide to the Genus Saxicola. Christopher Helm, London, UK

  79. Van De Loock D, Strubbe D, Thijs KW et al (2020) Flexible nest-site selection under anthropogenic habitat change in an Afrotropical understorey insectivore. Ibis 162:187–200. https://doi.org/10.1111/ibi.12691

    Article  Google Scholar 

  80. Van Dyck H (2012) Changing organisms in rapidly changing anthropogenic landscapes: the significance of the ‘Umwelt’-concept and functional habitat for animal conservation. Evol Appl 5:144–153. https://doi.org/10.1111/j.1752-4571.2011.00230.x

    Article  PubMed  Google Scholar 

  81. Van Horne B (1983) Density as a misleading indicator of habitat quality. J Wildl Manage 47:893–901. https://doi.org/10.2307/3808148

    Article  Google Scholar 

  82. Vickery JA, Arlettaz R (2012) The importance of habitat heterogeneity at multiple scales for birds in European agricultural landscapes. In: Fuller RJ (ed) Birds and Habitat. Relationships in changing landscapes. Cambridge University Press, Cambridge, pp 177–204

    Chapter  Google Scholar 

  83. Vickery PD, Hunter ML, Wells JV (1992) Use of a new reproductive index to evaluate relationship between habitat quality and breeding success. Auk 109:697–705. https://doi.org/10.2307/4088145

    Article  Google Scholar 

  84. Viljur ML, Teder T (2016) Butterflies take advantage of contemporary forestry: clear-cuts as temporary grasslands. For Ecol Manage 376:118–125. https://doi.org/10.1016/j.foreco.2016.06.002

    Article  Google Scholar 

  85. Wong BBM, Candolin U (2015) Behavioral responses to changing environments. Behav Ecol 26:665–673. https://doi.org/10.1093/beheco/aru183

    Article  Google Scholar 

  86. Żmihorski M (2012) The effects of anthropogenic and natural disturbances on breeding birds of managed Scots pine forests in northern Poland. Ornis Fenn 89:63–73

    Google Scholar 

  87. Żmihorski M, Berg Å, Pärt T (2016) Forest clear-cuts as additional habitat for breeding farmland birds in crisis. Agric Ecosyst Environ 233:291–297. https://doi.org/10.1016/j.agee.2016.09.023

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all the volunteers and particularly to Paul Gailly who helped with the stonechat survey in the study area. Gilles San Martin provided advice for data analysis. We thank the landowners for access to private properties and the Département de la Nature et des Forêts for access to public forest sites. We also thank the two anonymous referees and the handling editor for their valuable comments on the manuscript. R Gailly was funded by the Belgian National Fund for Scientific Research F.R.S.-FNRS through an FRIA PhD-grant.

Author information

Affiliations

Authors

Contributions

RG, JYP, NT and MD conceived and designed the experiments, RG conducted fieldwork, RG and LC analysed the data and wrote the manuscript, and JYP, NT and MD provided editorial advice.

Corresponding author

Correspondence to Robin Gailly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed. R. Gailly received a regional licence for stonechats capturing and ringing via the Royal Belgian Institute of Natural Sciences (IRSNB-KBIN).

Additional information

Communicated by Thomas Koert Lameris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 388 kb)

Supplementary file2 (PDF 634 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gailly, R., Cousseau, L., Paquet, JY. et al. Flexible habitat use in a migratory songbird expanding across a human-modified landscape: is it adaptive?. Oecologia 194, 75–86 (2020). https://doi.org/10.1007/s00442-020-04765-y

Download citation

Keywords

  • Farmland birds
  • Non-food crop
  • Ecological traps
  • Habitat selection
  • Behavioural plasticity
  • Reproductive success
  • Survival
  • Christmas tree plantation
  • Forest harvesting
  • Saxicola torquatus