Skip to main content

Plant-available soil nutrients have a limited influence on cone production patterns of individual white spruce trees

Abstract

The resource budget model for mast seeding hypothesizes that soil nutrients proximately influence reproduction. Plants in high soil nutrient (particularly N) areas are predicted to have lower reproductive variability over time and higher mean reproduction. While often examined theoretically, there are relatively few empirical tests of this hypothesis. We quantified cone production of 110 individual white spruce (Picea glauca) trees over seven years and quantified plant-available soil macronutrients (N, Ca, K, Mg, P, S) in natural forest conditions across three years with different cone crop conditions. Each of these plant-available soil nutrients were correlated across years (rs = 0.55–0.89; all > 0.81 for total-N); spatially, total-N availability varied 366-fold across trees. Plant-available soil nutrients did not influence variability or mean annual reproduction, contrary to nutrient perturbation experiments. We examined within-year nutrient and cone-production relationships, and observed significant positive relationships between reproduction and plant-available soil nutrients only in a low-reproduction year preceding a mast event. Both during a mast event and the following year, when overall cone production was very high or very low, there were no relationships. Both external drivers (e.g., weather) and internal resource budgets likely influence soil nutrient-reproduction relationships. These results suggest that plant-available soil nutrients may not be a large factor influencing mast-seeding patterns among individuals in this species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Agren GI, Wetterstedt JAM, Billberger MFK (2012) Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus. New Phytol 194:953–960

    Article  Google Scholar 

  2. Allen RB, Millard P, Richardson SJ (2017) A resource centric view of climate and mast seeding in trees. In: Cánovas F, Lüttge U, Matyssek R (eds) Progress in botany 79:233–268. https://doi.org/10.1007/124_2017_8

  3. Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classes (R package version 0.999999-0). http://cran.r-project.org/web/packages/lme4/index.html

  4. Bengtson P, Basiliko N, Prescott CE, Grayston SJ (2007) Spatial dependency of soil nutrient availability and microbial properties in a mixed forest of Tsuga heterophylla and Pseudotsuga menziesii, in coastal British Columbia, Canada. Soil Biol Biochem 39:2429–2435. https://doi.org/10.1016/j.soilbio.2007.04.010

    CAS  Article  Google Scholar 

  5. Bogdziewicz M, Crone EE, Steele MA, Zwolak R (2017) Effects of nitrogen deposition on reproduction in a masting tree: benefits of higher seed production are trumped by negative biotic interactions. J Ecol 105:310–320. https://doi.org/10.1111/1365-2745.12673

    CAS  Article  Google Scholar 

  6. Bogdziewicz M, Ascoli D, Hacket-Pain A, Koenig WD, Pearse I, Pesendorfer M, Satake A, Thomas P, Vacchiano G, Wohlgemuth T, Tanentzap A (2020) From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecol Lett 23:210–220. https://doi.org/10.1111/ele.13442

    Article  PubMed  Google Scholar 

  7. Brady NC, Weil RR (2002) The nature and property of soils. Thirteenth Prentice Hall, Upper Saddle River, New Jersey, USA

    Google Scholar 

  8. Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R J 9:378–400

    Article  Google Scholar 

  9. Burnham K, Anderson D (2002) Model selection and multimodel inference. Springer, New York

    Google Scholar 

  10. Canham CD, Ruscoe WA, Wright EF, Wilson DJ (2014) Spatial and temporal variation in tree seed production and dispersal in a New Zealand temperate rainforest. Ecosphere 5:1–14

    Article  Google Scholar 

  11. Cleavitt NL, Fahey TJ (2017) Seed production of sugar maple and American beech in northern hardwod forests, New Hampshire, USA. Can J For Res 47:985–990

    Article  Google Scholar 

  12. Crone EE, Rapp JM (2014) Resource depletion, pollen coupling, and the ecology of mast seeding. Ann NY Acad Sci 1322:21–34. https://doi.org/10.1111/nyas.12465

    CAS  Article  PubMed  Google Scholar 

  13. Davis MR, Allen RB, Clinton PW (2004) The influence of N addition on nutrient content, leaf carbon isotope ratio, and productivity in a Nothofagus forest during stand development. Can J For Res 34:2037–2048. https://doi.org/10.1139/x04-067

    Article  Google Scholar 

  14. Dorr JA, Eschmann DF (1970) Geology of Michigan. University of Michigan Press, Ann Arbor, Michigan

    Book  Google Scholar 

  15. Eis S (1967) Cone crops of white and black spruce are predictable. Forest Chron 43:247–252

    Article  Google Scholar 

  16. Fernández-Martínez M, Vicca S, Janssens IA, Espelta JM, Peñuelas J (2017) The role of nutrients, productivity and climate in determining tree fruit production in European forests. New Phytol 213:669–679. https://doi.org/10.1111/nph.14193

    CAS  Article  PubMed  Google Scholar 

  17. Fernández-Martínez M, Pearse I, Sardans J, Sayol F, Koenig WD, LaMontagne JM, Bogdziewicz M, Collalti A, Hacket-Pain A, Vacchiano G, Espelta JM, Peñuelas J, Janssens IA (2019) Nutrient scarcity as a selective pressure for mast seeding. Nat Plants 5:1222–1228. https://doi.org/10.1038/s41477-019-0549-y

    Article  PubMed  Google Scholar 

  18. Gärtner SM, Lieffers VJ, Macdonald SE (2011) Ecology and management of natural regeneration of white spruce in the boreal forest. Environ Rev 19:461–478. https://doi.org/10.1139/a11-017

    Article  Google Scholar 

  19. Ge LL, Tian HQ, Russell SD (2007) Calcium function and distribution during fertilization in angiosperms. Am J Bot 94:1046–1060

    CAS  Article  Google Scholar 

  20. Greene DF, Kneeshaw DD, Messier C, Lieffers V, Cormier D, Doucet R, Coates KD, Groot A, Grover G, Calogeropoulos C (2002) Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir). Forest Chron 78:281–295. https://doi.org/10.5558/tfc78281-2

    Article  Google Scholar 

  21. Gysel LW, Lemmien WA (1964) An eight-year record of fruit production. J Wildl Manag 28:175–177

    Article  Google Scholar 

  22. Halman JM, Schaberg PG, Hawley GJ, Pardo LH, Fahey TJ (2013) Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest. Tree Physiol 33:1242–1251. https://doi.org/10.1093/treephys/tpt099

    CAS  Article  PubMed  Google Scholar 

  23. Han Q, Kabeya D (2017) Recent developments in understanding mast seeding in relation to dynamics of carbon and nitrogen resources in temperate trees. Ecol Res 32:771–778. https://doi.org/10.1007/s11284-017-1494-8

    CAS  Article  Google Scholar 

  24. Han Q, Kabeya D, Iio A, Inagaki Y, Kakubari Y (2014) Nitrogen storage dynamics are affected by masting events in Fagus crenata. Oecologia 174:679–687. https://doi.org/10.1007/s00442-013-2824-3

    Article  PubMed  Google Scholar 

  25. Harrison DJ, Maynard DG (2014) Nitrogen mineralization assessment using PRSTM probes (ion-exchange membranes) and soil extractions in fertilized and unfertilized pine and spruce soils. Can J Soil Sci 94:21–34. https://doi.org/10.4141/cjss2012-064

    CAS  Article  Google Scholar 

  26. Hay J, Kelly D, Holdaway RJ (2008) Causes and consequences of frequent flowering on edges in the mast-seeding genus Chionochloa (Poaceae). NZ J Ecol 32:80–91

    Google Scholar 

  27. Hinkel KM, Nelson FE (2012) Spatial and temporal aspects of the lake effect on the southern shore of Lake Superior. Theoret Appl Climatol 109:415–428. https://doi.org/10.1007/s00704-012-0585-2

    Article  Google Scholar 

  28. Hoch G, Siegwolf RTW, Keel SG, Körner C, Han Q (2013) Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia 171:653–662. https://doi.org/10.1007/s00442-012-2579-2

    Article  PubMed  Google Scholar 

  29. Hole L, Engardt M (2008) Climate change impact on atmospheric nitrogen deposition in northwestern Europe: a model study. Ambio 37:9–17

    CAS  Article  Google Scholar 

  30. Holman RM, Robbins WW (1937) A Textbook of General Botany for Colleges and Universities. Wiley, USA

    Google Scholar 

  31. Hueso RO, Piñeiro J, Power SA (2019) Decoupling of nutrient cycles in a Eucalyptus woodland under elevated CO2. J Ecol 2:2532–2540. https://doi.org/10.1111/1365-2745.13219

    CAS  Article  Google Scholar 

  32. Igarashi S, Shibata M, Masaki T, Tayasu I, Ichie T (2019) Mass flowering of Fagus crenata does not depend on the amount of stored carbohydrates in trees. Trees Struct Funct. https://doi.org/10.1007/s00468-019-01867-w

    Article  Google Scholar 

  33. Isagi Y, Sugimura K, Sumida A, Ito H (1997) How does masting happen and synchronize? J Theor Biol 187:231–239. https://doi.org/10.1006/jtbi.1997.0442

    Article  Google Scholar 

  34. Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 2:465–492

    Article  Google Scholar 

  35. Janzen DH (1974) Tropical backwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica 6:69–103

    Article  Google Scholar 

  36. Johnson OF, Lishawa SC, Lawrence BA (2019) Submerged harvest reduces invasive Typha and increases soil macronutrient availability. Plant Soil 442:157–167. https://doi.org/10.1007/s11104-019-04171-1

    CAS  Article  Google Scholar 

  37. Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9:465–470

    CAS  Article  Google Scholar 

  38. Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where? Annu Rev Ecol Syst 33:427–447. https://doi.org/10.1146/annurev.ecolsys.33.020602.095433

    Article  Google Scholar 

  39. Kelly D, Geldenhuis A, James A, Holland EP, Plank MJ, Robert E, Cowan PE, Harper A, Lee WG, Maitland J, Mark AF (2013) Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol Lett 16:90–98. https://doi.org/10.1111/ele.12020

    Article  PubMed  Google Scholar 

  40. Koenig WD, Knops JMH, Carmen WJ, Pearse IS (2015) What drives masting? The phenological synchrony hypothesis. Ecology 96:184–192

    Article  Google Scholar 

  41. Krebs CJ, LaMontagne JM, Kenney AJ, Boutin S (2012) Climatic determinants of white spruce cone crops in the boreal forest of southwestern Yukon. Botany 90:113–119. https://doi.org/10.1139/B11-088

    Article  Google Scholar 

  42. Kurth VJ, D’Amato AW, Bradford JB, Palik BJ, Looney CE (2019) Assessing the ecological impacts of biomass harvesting along a disturbance severity gradient. Ecol Appl 30:e02042. https://doi.org/10.1002/eap.2042

    Article  PubMed  Google Scholar 

  43. LaMontagne JM, Boutin S (2007) Local-scale synchrony and variability in mast seed production patterns of Picea glauca. J Ecol 95:991–1000. https://doi.org/10.1111/j.1365-2745.2007.01266.x

    Article  Google Scholar 

  44. LaMontagne JM, Peters S, Boutin S (2005) A visual index for estimating cone production for individual white spruce trees. Can J For Res 35:3020–3026. https://doi.org/10.1139/X05-210

    Article  Google Scholar 

  45. LaMontagne JM, Pearse IS, Greene DF, Koenig WD (2020) Mast seeding patterns are asynchronous at a continental scale. Nat Plants 6:460–465. https://doi.org/10.1038/s41477-020-0647-x

    Article  PubMed  Google Scholar 

  46. Lawrence BA, Zedler JB (2011) Formation of tussocks by sedges: effects of hydroperiod and nutrients. Ecol Appl 21:1745–1759

    Article  Google Scholar 

  47. Long RP, Horsley SB, Hall TJ (2011) Long-term impact of liming on growth and vigor of northern hardwoods. Can J For Res 1307:1295–1307. https://doi.org/10.1139/X11-049

    Article  Google Scholar 

  48. Lüdecke D (2018) ggeffects: tidy data frames of marginal effects from regression models. J Open Sour Softw 3:772. https://doi.org/10.21105/joss.00772

    Article  Google Scholar 

  49. Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258. https://doi.org/10.1016/j.pbi.2009.04.003

    CAS  Article  PubMed  Google Scholar 

  50. Marleau JN, Guichard F, Loreau M (2015) Emergence of nutrient colimitation through movement in stoichiometric meta-ecosystems. Ecol Lett 18:1163–1173. https://doi.org/10.1111/ele.12495

    Article  PubMed  Google Scholar 

  51. Muzika RM, Guyette RP, Stambaugh MC, Marschall JM (2015) Fire, drought, and humans in a heterogeneous lake superior landscape. J Sustain Forest 34:49–70. https://doi.org/10.1080/10549811.2014.973991

    Article  Google Scholar 

  52. Nienstaedt H, Zasada JC (1990) Picea glauca (Moench) Voss (White Spruce). In: Burns RM, Honkala BH (eds) Silvics of North America, Volume 1, Conifers Agricultural Handbook 654. Department of Agriculture and Forest Service, Washington, D.C., pp 204–226

  53. Norby RJ, Sloan VL, Iversen CM, Childs J (2019) Controls on fine-scale spatial and temporal variability of plant-available inorganic nitrogen in a polygonal tundra landscape. Ecosystems 22:528–543. https://doi.org/10.1007/s10021-018-0285-6

    CAS  Article  Google Scholar 

  54. Owens JN, Molder M (1977) Bud development in Picea glauca. II. Cone differentiation and early development. Can J Bot 55:2746–2760

    Article  Google Scholar 

  55. Paul KI, Polglase PJ, O’Connell AM, Carlyle JC, Smethurst PJ, Khanna PK (2003) Defining the relation between soil water content and net nitrogen mineralization. Eur J Soil Sci 54:39–47

    CAS  Article  Google Scholar 

  56. Pearse IS, Koenig WD, Knops JMH (2014) Cues versus proximate drivers: testing the mechanism behind masting behavior. Oikos 123:179–184. https://doi.org/10.1111/j.1600-0706.2013.00608.x

    Article  Google Scholar 

  57. Pearse IS, Koenig WD, Kelly D (2016) Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol 212:546–562. https://doi.org/10.1111/nph.14114

    CAS  Article  PubMed  Google Scholar 

  58. Pearse IS, LaMontagne JM, Koenig WD (2017) Inter-annual variation in seed production has increased over time (1900–2014). Proc R Soc B Biolog Sci 284:20171666. https://doi.org/10.1098/rspb.2017.1666

    Article  Google Scholar 

  59. Pérez-Ramos IM, Aponte C, García LV, Padilla-Díaz CM, Marañón T, Delzon S (2014) Why is seed production so variable among individuals? A ten-year study with oaks reveals the importance of soil environment. PLoS ONE 9:1–18. https://doi.org/10.1371/journal.pone.0115371

    CAS  Article  Google Scholar 

  60. Qian P, Schoenau JJ (2002) Practical applications of ion exchange resins in agricultural and environmental soil research. Can J Soil Sci 82:9–21. https://doi.org/10.4141/S00-091

    CAS  Article  Google Scholar 

  61. Qian P, Schoenau J (2005) Use of ion-exchange membrane to assess nitrogen-supply power of soils. J Plant Nutr 28:2193–2200

    CAS  Article  Google Scholar 

  62. Roland CA, Schmidt JH, Johnstone JF (2014) Climate sensitivity of reproduction in a mast-seeding boreal conifer across its distributional range from lowland to treeline forests. Oecologia 174:665–677. https://doi.org/10.1007/s00442-013-2821-6

    Article  PubMed  Google Scholar 

  63. Satake A, Iwasa Y (2000) Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. J Theor Biol 203:63–84. https://doi.org/10.1006/jtbi.1999.1066

    CAS  Article  PubMed  Google Scholar 

  64. Simpson TB, Stuart PE, Barnes BV (1990) Landscape ecosystems and cover types of the reserve area and adjacent lands of the Huron Mountain Club. Occasional Papers of the Huron Mountain Wildlife Foundation No. 4 128

  65. Smaill SJ, Clinton PW, Allen RB, Davis MR (2011) Climate cues and resources interact to determine seed production by a masting species. J Ecol 99:870–877. https://doi.org/10.1111/j.1365-2745.2011.01803.x

    Article  Google Scholar 

  66. Sork VL, Bramble J, Sexton O (1993) Ecology of mast-fruiting in three species of North American deciduous oaks. Ecology 74:528–541

    Article  Google Scholar 

  67. Stiell WM (1976) White spruce: Artificial regeneration in Canada. Ottawa, Ontario

  68. Tanentzap AJ, Lee WG, Coomes DA (2012) Soil nutrient supply modulates temperature-induction cues in mast-seeding grasses. Ecology 93:462–469

    Article  Google Scholar 

  69. Vogt KA, Grier CC, Vogt DJ, Introduction I (1986) Production, turnover , and nutrient dynamics of above- and belowground detritus of world forests. 15

  70. Wang GG, Klinka K (1997) White spruce foliar nutrient concentrations in relation to tree growth and soil nutrient amounts. For Ecol Manage 98:89–99

    Article  Google Scholar 

  71. Wang M, Moore TR (2014) Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystem 17:673–684. https://doi.org/10.1007/s10021-014-9752-x

    CAS  Article  Google Scholar 

  72. Whitehead DR (1983) Wind pollination: some ecological and evolutionary perspectives. In: Real L (ed) Pollination biology. Academic Press, USA, pp 97–108

    Chapter  Google Scholar 

  73. Wilde SA (1966) Soil standards for planting Wisconsin conifers. J Forest 66:389–391

    Google Scholar 

  74. Zasada JC, Viereck LA (1970) White spruce cone and seed production in interior Alaska, 1957–68

Download references

Acknowledgements

We thank all who contributed to data collection including A. Grecco, M. Lordon, A. Sajwani, C. Xu, and C. Hernsdorf. This work was supported by NSF grant DEB-1745496 to JML, the Huron Mountain Wildlife Foundation, Western Ag Innovations, University Research Council Collaborative Grant from DePaul University, College of Science & Health Summer Faculty Research Grant, and Undergraduate Summer Research and Undergraduate Research Assistant Programs.

Author information

Affiliations

Authors

Contributions

ACL, BAL, and JML contributed to experimental design and writing the manuscript. ACL and JML performed fieldwork and BAL conducted laboratory work on soil characteristics and foliar nutrients. ACL, BAL, and JML contributed to statistical approaches and ACL conducted the statistical analysis.

Corresponding author

Correspondence to Abigail C. Leeper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Katherine L Gross.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 kb)

Supplementary file2 (XLSX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leeper, A.C., Lawrence, B.A. & LaMontagne, J.M. Plant-available soil nutrients have a limited influence on cone production patterns of individual white spruce trees. Oecologia 194, 101–111 (2020). https://doi.org/10.1007/s00442-020-04759-w

Download citation

Keywords

  • Mast seeding
  • Nitrogen
  • Nutrient availability
  • Reproduction
  • Resource budget