Skip to main content

Advertisement

Log in

Studying animal niches using bulk stable isotope ratios: an updated synthesis

  • Concepts, Reviews and Syntheses
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The development of the isotopic niche, an n-dimensional hypervolume (with n being the number of isotopes) occupied by a population in delta space, has revolutionized the study of animal interactions in wild populations. While the isotopic niche offers a useful means to understand interactions at many ecological resolutions (e.g., individual, population, community, ecosystem), a variety of intrinsic and extrinsic factors drive isotopic variability and influence the ultimate geometry of observed niche dimensions. Here, we provide an updated synthesis to guide the application of bulk stable isotope ratios to study ecological niches. We summarize progress in the application of bulk stable isotope ratios for evaluating niches to synthesize a formal definition of the isotopic niche. We identify six broad categories to describe drivers of isotopic variance introduced by the animal, its environment, and the researcher, and provide recommendations to account for such variations before, during, and after sample collection and data analyses. Our synthesis illustrates the considerations that should be made before employing the isotopic niche to broader ecological contexts, and offers guidance for the use and interpretation of isotopic niche dynamics in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arostegui MC, Schindler DE, Holtgrieve GW (2019) Does lipid-correction introduce biases into isotopic mixing models? Implications for diet reconstruction studies. Oecologia. https://doi.org/10.1007/s00442-019-04525-7

    Article  PubMed  Google Scholar 

  • Arrington DA, Winemiller KO (2002) Preservation effects on stable isotope analysis of fish muscle. Trans Am Fish Soc 131:337–342

    CAS  Google Scholar 

  • Auerswald K, Wittmer MH, Zazzo A, Schäufele R, Schnyder H (2010) Biases in the analysis of stable isotope discrimination in food webs. J Appl Ecol 47:936–941

    Google Scholar 

  • Babaranti O, Horn S, Jowett T, Frew R (2019) Isotopic signatures in Mytilus galloprovincialis and Ulva latuca as bioindicators for assessing discharged sewage effluent in coastal waters along Otago Peninsula, New Zealand. Geol Ecol Land 3:53–64

    Google Scholar 

  • Badyaev AV (2002) Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends Ecol Evol 17:369–378

    Google Scholar 

  • Bahlmann E, Bernasconi SM, Bouillon S, Houtekamer M, Korntheuer M, Langenberg F et al (2010) Performance evaluation of nitrogen isotope ratio determination in marine and lacustrine sediments: an inter-laboratory comparison. Organ Geochem 4:3–12

    Google Scholar 

  • Barger CP, Young RC, Will A, Ito M, Kitaysky AS (2016) Resource partitioning between sympatric seabird species increases during chick-rearing. Ecosphere 7:e01447

    Google Scholar 

  • Barnes C, Sweeting CJ, Jennings S, Barry JT, Polunin NV (2007) Effect of temperature and ration size on carbon and nitrogen stable isotope trophic fractionation. Funct Ecol 21:356–362

    Google Scholar 

  • Barnes C, Jennings S, Barry JT (2009) Environmental correlates of large-scale spatial variation in the δ13C of marine animals. Estuar Coast Shelf Sci 81:368–374

    Google Scholar 

  • Bastos RF, Corrêa F, Winemiller KO, Garcia AM (2017) Are you what you eat? Effects of trophic discrimination factors on estimates of food assimilation and trophic position with a new estimation method. Ecol Ind 75:234–241

    Google Scholar 

  • Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Google Scholar 

  • Bearhop S, Phillips RA, McGill R, Cherel Y, Dawson DA, Croxall JP (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar Ecol Prog Ser 311:157–164

    Google Scholar 

  • Bicknell AWJ, Campbell M, Knight ME, Bilton DT, Newton J, Votier SC (2011) Effects of formalin preservation on stable carbon and nitrogen isotope signatures in Calanoid copepods: implications for the use of Continuous Plankton Recorder Survey samples in stable isotope analysis. Rapid Commun Mass Spectrom 25:1794–1800

    CAS  PubMed  Google Scholar 

  • Bird CS, Veríssimo A, Magozzi S, Abrantes KG, Aguilar A, Al-Reasi H et al (2018) A global perspective on the trophic geography of sharks. Ecol Evol 2:299

    Google Scholar 

  • Bishop KA, McClelland JW, Dunton KH (2017) Freshwater contributions and nitrogen sources in a south Texas estuarine ecosystem: a time-integrated perspective from stable isotopic ratios in the eastern oyster (Crassostrea virginica). Estuar Coast 40:1314–1324

    CAS  Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Blonder B (2016a) Do hypervolumes have holes? Am Nat 187:E93–E105

    PubMed  Google Scholar 

  • Blonder B (2016b) Pushing past boundaries for trait hypervolumes: a response to Carmona et al. Trends Ecol Evol 31:665–667

    PubMed  Google Scholar 

  • Blonder B (2018) Hypervolume concepts in niche-and trait-based ecology. Ecography 41:1441–1455

    Google Scholar 

  • Blonder B, Lamanna C, Violle C, Enquist BJ (2014) The n-dimensional hypervolume. Glob Ecol Biogeogr 23:595–609

    Google Scholar 

  • Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440

    Google Scholar 

  • Boggs AS, Hamlin HJ, Nifong JC, Kassim BL, Lowers RH, Galligan TM et al (2016) Urinary iodine and stable isotope analysis to examine habitat influences on thyroid hormones among coastal dwelling American alligators. Gen Comp Endocrinol 226:5–13

    CAS  PubMed  Google Scholar 

  • Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941

    Google Scholar 

  • Bolnick DI, Svanback R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    PubMed  Google Scholar 

  • Bond AL, Diamond AW (2011) Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Appl 21:1017–1023

    PubMed  Google Scholar 

  • Bond AL, Jones IL (2009) A practical introduction to stable-isotope analysis for seabird biologists: approaches, cautions and caveats. Mar Ornithol 37:183–188

    Google Scholar 

  • Bond ME, Valentin-Albanese J, Babcock EA, Hussey NE, Heithaus MR, Chapman DD (2018) The trophic ecology of Caribbean reef sharks (Carcharhinus perezi) relative to other large teleost predators on an isolated coral atoll. Mar Biol 165:67

    Google Scholar 

  • Brault EK, Koch PL, McMahon KW, Broach KH, Rosenfield AP, Sauthoff W et al (2018) Carbon and nitrogen zooplankton isoscapes in West Antarctica reflect oceanographic transitions. Mar Ecol Prog Ser 593:29–45

    CAS  Google Scholar 

  • Brauns M, Boëchat IG, de Carvalho APC, Graeber D, Gücker B, Mehner T, von Schiller D (2018) Consumer-resource stoichiometry as a predictor of trophic discrimination (Δ13C, Δ15N) in aquatic invertebrates. Freshwater Biol 63:1240–1249

    CAS  Google Scholar 

  • Bryan HM, Darimont CT, Paquet PC, Wynne-Edwards KE, Smits JE (2013) Stress and reproductive hormones in grizzly bears reflect nutritional benefits and social consequences of a salmon foraging niche. PLoS One 8:e80537

    PubMed  PubMed Central  Google Scholar 

  • Bugoni L, McGill RA, Furness RW (2008) Effects of preservation methods on stable isotope signatures in bird tissues. Rapid Commun Mass Spectrom 22:2457–2462

    CAS  PubMed  Google Scholar 

  • Burrows DG, Reichert WL, Bradley Hanson M (2014) Effects of decomposition and storage conditions on the δ13C and δ15N isotope values of killer whale (Orcinus orca) skin and blubber tissues. Mar Mam Sci 30:747–762

    CAS  Google Scholar 

  • Canfield DE (2001) Biogeochemistry of sulfur isotopes. Rev Mineral Geochem 43:607–636

    CAS  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Kinzig AP et al (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67

    CAS  PubMed  Google Scholar 

  • Carle RD, Beck JN, Calleri DM, Hester MM (2015) Temporal and sex-specific variability in Rhinoceros Auklet diet in the central California Current system. J Mar Syst 146:99–108

    Google Scholar 

  • Carleton SA, Del Rio CM (2005) The effect of cold-induced increased metabolic rate on the rate of 13C and 15N incorporation in house sparrows (Passer domesticus). Oecologia 144:226–232

    CAS  PubMed  Google Scholar 

  • Carlisle AB, Goldman KJ, Litvin SY, Madigan DJ, Bigman JS, Swithenbank AM et al (2015) Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark. Proc R Soc B 282:20141446

    PubMed  PubMed Central  Google Scholar 

  • Carlisle AB, Litvin SY, Madigan DJ, Lyons K, Bigman JS, Ibarra M, Bizzarro JJ (2016) Interactive effects of urea and lipid content confound stable isotope analysis in elasmobranch fishes. Can J Fish Aquat Sci 74:419–428

    Google Scholar 

  • Carter WA, Bauchinger U, McWilliams SR (2019) The importance of isotopic turnover for understanding key aspects of animal ecology and nutrition. Diversity 11:84

    CAS  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    CAS  Google Scholar 

  • Chung MT, Trueman CN, Godiksen JA, Grønkjær P (2019) Otolith δ13C values as a metabolic proxy: approaches and mechanical underpinnings. Mar Freshw Res. https://doi.org/10.1071/MF18317

    Article  Google Scholar 

  • Churchill DA, Heithaus MR, Vaudo JJ, Grubbs RD, Gastrich K, Castro JI (2015) Trophic interactions of common elasmobranchs in deep-sea communities of the Gulf of Mexico revealed through stable isotope and stomach content analysis. Deep Sea Res II 115:92–102

    CAS  Google Scholar 

  • Clementz MT, Koch PL (2001) Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129:461–472

    PubMed  Google Scholar 

  • Clutton-Brock T, Sheldon BC (2010) Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25:562–573

    PubMed  Google Scholar 

  • Codron J, Codron D, Lee-Thorp JA, Sponheimer M, Bond WJ, de Ruiter D, Grant R (2005) Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J Archaeol Sci 32:1757–1772

    Google Scholar 

  • Connan M, Hall G, Smale M (2020) Effects of pre-treatments on bulk stable isotope ratios in fish samples: a cautionary note for studies comparisons. Rapid Commun Mass Spectrom. https://doi.org/10.1002/rcm.8344

    Article  Google Scholar 

  • Connolly RM, Schlacher TA (2013) Sample acidification significantly alters stable isotope ratios of sulfur in aquatic plants and animals. Mar Ecol Prog Ser 493:1–8

    CAS  Google Scholar 

  • Connolly RM, Guest MA, Melville AJ, Oakes JM (2004) Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia 138:161–167

    PubMed  Google Scholar 

  • Dannheim J, Struck U, Brey T (2007) Does sample bulk freezing affect stable isotope ratios of infaunal macrozoobenthos? J Exp Mar Biol 351:37–41

    Google Scholar 

  • Davis P, Syme J, Heikoop J, Fessenden-Rahn J, Perkins G, Newman B et al (2015) Quantifying uncertainty in stable isotope mixing models. J Geophys Res Biogeogr 120:903–923

    Google Scholar 

  • Dekar MP, King RS, Back JA, Whigham DF, Walker CM (2012) Allochthonous inputs from grass-dominated wetlands support juvenile salmonids in headwater streams: evidence from stable isotopes of carbon, hydrogen, and nitrogen. Freshw Sci 31:121–132

    Google Scholar 

  • Ducatez S, Dalloyau S, Richard P, Guinet C, Cherel Y (2008) Stable isotopes document winter trophic ecology and maternal investment of adult female southern elephant seals (Mirounga leonina) breeding at the Kerguelen Islands. Mar Biol 155:413–420

    Google Scholar 

  • Dudley BD, Shima JS (2010) Algal and invertebrate bioindicators detect sewage effluent along the coast of Titahi Bay, Wellington, New Zealand. N Z J Mar Freshw 44:39–51

    CAS  Google Scholar 

  • De Lecea AM, Smit AJ, Fennessy ST (2011) The effects of freeze/thaw periods and drying methods on isotopic and elemental carbon and nitrogen in marine organisms, raising questions on sample preparation. Rapid Commun Mass Spectrom 25:3640–3649

    PubMed  Google Scholar 

  • de Roos AM, Persson L (2013) Population and community ecology of ontogentic development. Princeton University Press, Princeton

    Google Scholar 

  • de Ross AM, Leonardsson K, Persson L, Mittlebach GG (2002) Ontogentic niche shifts and flexible behavior in size-structured populations. Ecol Monogr 72:271–292

    Google Scholar 

  • Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W et al (2010) Defining and measuring ecological specialization. J Appl Ecol 47:15–25

    Google Scholar 

  • Doi H, Akamatsu F, González AL (2017) Starvation effects on nitrogen and carbon stable isotopes of animals: an insight from meta-analysis of fasting experiments. R Soc Open Sci 4:170633

    PubMed  PubMed Central  Google Scholar 

  • Durso AM (2016) Stable isotopes and the ecology and physiology of reptiles. Ph.D. Dissertation. Utah State University

  • Elton C (1927) Animal ecology. Sedgwick and Jackson, London

    Google Scholar 

  • Fairbairn DJ (1997) Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annu Rev Ecol Syst 28:659–687

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    CAS  Google Scholar 

  • Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE, Airieau S, Thiemens MH (2003) Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36

    CAS  Google Scholar 

  • Faye D, de Morais LT, Raffray J, Sadio O, Thiaw OT, Le Loc’h F (2011) Structure and seasonal variability of fish food webs in an estuarine tropical marine protected area (Senegal): evidence from stable isotope analysis. Estuar Coast Shelf Sci 92:607–617

    CAS  Google Scholar 

  • Feuchtmayr H, Grey J (2003) Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton. Rapid Commun Mass Spectrom 17:2605

    CAS  PubMed  Google Scholar 

  • Fleming AH, Kellar NM, Allen CD, Kurle CM (2018) The utility of combining stable isotope and hormone analyses in marine megafauna research. Front Mar Sci 5:338

    Google Scholar 

  • Fogel ML, Griffin PL, Newsome SD (2016) Hydrogen isotopes in individual amino acids reflect differentiated pools of hydrogen from food and water in Escherichia coli. Proc Natl Acad Sci 113:E4648–E4653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foley AM, Hewitt DG, DeYoung RW, Schnupp MJ, Hellickson MW, Lockwood MA (2018) Reproductive effort and success of males in scramble-competition polygyny: evidence for trade-offs between foraging and mate search. J Anim Ecol 87:1600–1614

    PubMed  Google Scholar 

  • Frankel NS, Vander Zanden HB, Reich KJ, Williams KL, Bjorndal KA (2012) Mother−offspring stable isotope discrimination in loggerhead sea turtles Caretta caretta. Endanger Species Res 17:133–138

    Google Scholar 

  • Fry B (2006) Stable isotope ecology, vol 521. Springer, New York

    Google Scholar 

  • Fryxell DC, Weiler DE, Kinnison MT, Palkovacs EP (2019) Eco-evolutionary dynamics of sexual dimorphism. Trends Ecol Evol 34:591–594

    PubMed  Google Scholar 

  • Galván DE, Sweeting CJ, Reid WDK (2010) Power of stable isotope techniques to detect size-based feeding in marine fishes. Mar Ecol Prog Ser 407:271–278

    Google Scholar 

  • Gannes LZ, O’Brien DM, Del Rio CM (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271–1276

    Google Scholar 

  • Gentsch RP, Kjellander P, Röken BO (2018) Cortisol response of wild ungulates to trauma situations: hunting is not necessarily the worst stressor. Eur J Wildl Res 64:11

    Google Scholar 

  • Gittleman JL, Thompson SD (1988) Energy allocation in mammalian reproduction. Am Zool 28:863–875

    Google Scholar 

  • Goericke R, Fry B (1994) Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Glob Biogeochem Cycles 8:85–90

    CAS  Google Scholar 

  • Gonzalez-Bergonzoni I, Vidal N, Wang B, Ning D, Liu Z, Jeppesen E, Meerhoff M (2015) General validation of formalin-preserved fish sampling in food web studies using stable isotopes. Methods Ecol Evol 6:307–314

    Google Scholar 

  • Gorokhova E (2018) Individual growth as a non-dietary determinant of the isotopic niche metrics. Methods Ecol Evol 9:269–277

    Google Scholar 

  • Gorokhova E, Hansson S (1999) An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Can J Fish Aquat Sci 56:2203–2210

    Google Scholar 

  • Graham BS, Koch PL, Newsome SD, McMahon KW, Aurioles D (2010) Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. In: Isoscapes. Springer, Dordrecht, pp 299–318

  • Grinnell J (1917) The niche-relationships of the California Thrasher. Auk 34:427–433

    Google Scholar 

  • Hammerschlag-Peyer CM, Yeager LA, Araújo MS, Layman CA (2011) A hypothesis-testing framework for studies investigating ontogenetic niche shifts using stable isotope ratios. PLoS One 6:e27104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerschlag N, Skubel RA, Sulikowski J, Irschick DJ, Gallagher AJ (2018) A comparison of reproductive and energetic states in a marine apex predator (the tiger shark, Galeocerdo cuvier). Physiol Biochem Zool 91:933–942

    PubMed  Google Scholar 

  • Healy K, Guillerme T, Kelly SB, Inger R, Bearhop S, Jackson AL (2018) SIDER: an R package for predicting trophic discrimination factors of consumers based on their ecology and phylogenetic relatedness. Ecography 41:1393–1400

    Google Scholar 

  • Herman RW (2016) Investigating species and population-level foraging variation and individual specialization in Pygoscelis penguins using stable isotope analysis. Masters Thesis. Louisana State University, Baton Rouge

  • Herman RW, Valls FC, Hart T, Petry MV, Trivelpiece WZ, Polito MJ (2017) Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar Biol 164:115

    Google Scholar 

  • Hertz E, Trudel M, El-Sabaawi R, Tucker S, Dower JF, Beacham TD et al (2016) Hitting the moving target: modelling ontogenetic shifts with stable isotopes reveals the importance of isotopic turnover. J Anim Ecol 85:681–691

    PubMed  Google Scholar 

  • Hette-Tronquart N (2019) Isotopic niche is not equal to trophic niche. Ecol Lett 22:1987–1989. https://doi.org/10.1111/ele.13374

    Article  PubMed  Google Scholar 

  • Hobson KA, Wassenaar LI (eds) (2018) Tracking animal migration with stable isotopes. Academic Press, London

    Google Scholar 

  • Hobson KA, Welch HE (1992) Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar Ecol Prog Ser 84:9–18

    CAS  Google Scholar 

  • Hobson KA, Alisauskas RT, Clark RG (1993) Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. Condor 95:388–394

    Google Scholar 

  • Hobson KA, Plint T, Serrano EG, Alvarez XM, Ramirez I, Longstaffe FJ (2017) Within-wing isotopic (δ2H, δ13C, δ15N) variation of monarch butterflies: implications for studies of migratory origins and diet. Anim Migr 4:8–14

    Google Scholar 

  • Hobson KA, Kardynal KJ, Koehler G (2019) Expanding the isotopic toolbox to track Monarch Butterfly (Danaus plexippus) origins and migration: on the utility of stable oxygen isotope (δ18O) measurements. Front Ecol Evol 7:224

    Google Scholar 

  • Hoffman JC, Sutton TT (2010) Lipid correction for carbon stable isotope analysis of deep-sea fishes. Deep Sea Res I 57:956–964

    CAS  Google Scholar 

  • Hoffman JC, Bronk DA, Olney JE (2007) Contribution of allochthonous carbon to American shad production in the Mattaponi River, Virginia, using stable isotopes. Estuar Coast 30:1034–1048

    CAS  Google Scholar 

  • Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci 106:19659–19665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton LA, Johnson CG, Repeta DJ, Pantoja S (2000) Submicromolar measurement of δ15N bulk isotope ratios in chlorophyll-a using elemental analysis-isotope ratio mass spectrometry (EA-IRMS). In: 48th ASMS conference on mass spectrometry and allied topic, Long Beach

  • Hovinen JE, Tarroux A, Ramírez F, Forero M, Descamps S (2019) Relationships between isotopic ratios, body condition and breeding success in a High Arctic seabird community. Mar Ecol Prog Ser 613:183–195

    CAS  Google Scholar 

  • Hussey NE, Chapman DD, Donnelly E, Abercrombie DL, Fisk AT (2011) Fin-icky samples: an assessment of shark fin as a source material for stable isotope analysis. Limnol Oceanogr Methods 9:524–532

    CAS  Google Scholar 

  • Hussey NE, Olin JA, Kinney MJ, McMeans BC, Fisk AT (2012) Lipid extraction effects on stable isotope values (δ13C and δ15N) of elasmobranch muscle tissue. J Exp Mar Biol Ecol 434:7–15

    Google Scholar 

  • Hussey NE, MacNeil MA, McMeans BC, Olin JA, Dudley SF, Cliff G et al (2014) Rescaling the trophic structure of marine food webs. Ecol Lett 17:239–250

    PubMed  Google Scholar 

  • Hutchinson G (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • Jackson AL, Parnell AC (2017) AndrewLJackson/SIBER. v2.1.3. Zenodo. https://doi.org/10.5281/zenodo.570579

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER–stable isotope Bayesian ellipses in R. J Anim Ecol 80:595–602

    PubMed  Google Scholar 

  • Jarvis SG, Henrys PA, Keith AM, Mackay E, Ward SE, Smart SM (2019) Model-based hypervolumes for complex ecological data. Ecology 100:e02676

    PubMed  Google Scholar 

  • Jenkins SG, Partridge ST, Stephenson TR, Farley SD, Robbins CT (2001) Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia 129:336–341

    PubMed  Google Scholar 

  • Jennings S, Pinnegar JK, Polunin NV, Warr KJ (2002a) Linking size-based and trophic analyses of benthic community structure. Mar Ecol Prog Ser 226:77–85

    Google Scholar 

  • Jennings S, Greenstreet S, Hill L, Piet G, Pinnegar J, Warr KJ (2002b) Long-term trends in the trophic structure of the North Sea fish community: evidence from stable-isotope analysis, size-spectra and community metrics. Mar Biol 141:1085–1097

    Google Scholar 

  • Junker RR, Kuppler J, Bathke AC, Schreyer ML, Trutschnig W (2016) Dynamic range boxes—a robust nonparametric approach to quantify size and overlap of n-dimensional hypervolumes. Methods Ecol Evol 7:1503–1513

    Google Scholar 

  • Kaehler S, Pakhomov EA (2001) Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms. Mar Ecol Prog Ser 219:299–304

    CAS  Google Scholar 

  • Karlson AM, Reutgard M, Garbaras A, Gorokhova E (2018) Isotopic niche reflects stress-induced variability in physiological status. R Soc Open Sci 5:171398

    PubMed  PubMed Central  Google Scholar 

  • Kast ER, Stolper DA, Auderset A et al (2019) Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science 364:386–389

    CAS  PubMed  Google Scholar 

  • Keenan SW, DeBruyn JM (2019) Changes to vertebrate tissue stable isotope (δ15N) composition during decomposition. Sci Rep 9:9929

    PubMed  PubMed Central  Google Scholar 

  • Kellar NM, Catelani KN, Robbins MN, Trego ML, Allen CD, Danil K, Chivers SJ (2015) Blubber cortisol: a potential tool for assessing stress response in free-ranging dolphins without effects due to sampling. PLoS One 10:e0115257

    PubMed  PubMed Central  Google Scholar 

  • Kernaléguen L, Cazelles B, Arnould JPY, Guinet C, Cherel Y (2012) Long-term species, sexual and individual variations in foraging strategies of fur seals reveals by stable isotopes in whiskers. PLoS One 7:e32916

    PubMed  PubMed Central  Google Scholar 

  • Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI (2006) A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol 43:1213–1222

    CAS  Google Scholar 

  • Kim SL, Koch PL (2012) Methods to collect, preserve, and prepare elasmobranch tissues for stable isotope analysis. Environ Biol Fish 95:53–63

    Google Scholar 

  • Kishe-Machumu MA, van Rijssel JC, Poste A, Hecky RE, Witte F (2017) Stable isotope evidence from formalin-ethanol-preserved specimens indicates dietary shifts and increasing diet overlap in Lake Victoria cichlids. Hydrobiologia 791:155–173

    CAS  Google Scholar 

  • Kitagawa T, Fujioka K (2017) Rapid ontogenetic shift in juvenile Pacific bluefin tuna diet. Mar Ecol Prog Ser 571:253–257

    CAS  Google Scholar 

  • Klug H, Bonsall MB (2014) What are the benefits of parental care? The importance of parental effects on developmental rate. Ecol Evol 4:2330–2351

    PubMed  PubMed Central  Google Scholar 

  • Koch PL (2007) Isotopic study of the biology of modern and fossil vertebrates. Stable Isot Ecol Environ Sci 2:99–154

    Google Scholar 

  • Koehler G, Hobson KA (2019) Tracking cats revisited: placing terrestrial mammalian carnivores on δ2H and δ18O isoscapes. PLoS One 14:e0221876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolasinski J, Rogers K, Frouin P (2008) Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef. Rapid Commun Mass Spectrom 22:2955–2960

    CAS  PubMed  Google Scholar 

  • Lafferty DJ, Laudenslager ML, Mowat G, Heard D, Belant JL (2015) Sex, diet, and the social environment: factors influencing hair cortisol concentration in free-ranging black bears (Ursus americanus). PLoS One 10:e0141489

    PubMed  PubMed Central  Google Scholar 

  • Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

    PubMed  Google Scholar 

  • Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR et al (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562

    PubMed  Google Scholar 

  • Le Bourg B, Kiszka J, Bustamante P (2014) Mother–embryo isotope (δ15N, δ13C) fractionation and mercury (Hg) transfer in aplacental deep-sea sharks. J Fish Biol 84:1574–1581

    PubMed  Google Scholar 

  • Lemons GE, Eguchi T, Lyon BN, LeRoux R, Seminoff JA (2012) Effects of blood anticoagulants on stable isotope values of sea turtle blood tissue. Aquat Biol 14:201–206

    Google Scholar 

  • Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846

    PubMed  Google Scholar 

  • Lorrain A, Pethybridge H, Cassar N, Receveur A, Allain V, Bodin N et al (2019) Trends in tuna carbon isotopes suggest global changes in pelagic phytoplankton communities. Glob Change Biol. https://doi.org/10.1111/gcb.14858

    Article  Google Scholar 

  • MacKenzie KM, Longmore C, Preece C, Lucas CH, Trueman CN (2014) Testing the long-term stability of marine isoscapes in shelf seas using jellyfish tissues. Biogeochemistry 121:441–454

    Google Scholar 

  • Madigan DJ, Litvin SY, Popp BN, Carlisle AB, Farwell CJ, Block BA (2012) Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific bluefin tuna (Thunnus orientalis). PLoS One 7:e49220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan DJ, Brooks EJ, Bond ME, Gelsleichter J, Howey LA, Abercrombie DL et al (2015) Diet shift and site-fidelity of oceanic whitetip sharks Carcharhinus longimanus along the Great Bahama Bank. Mar Ecol Prog Ser 529:185–197

    Google Scholar 

  • Madigan DJ, Snodgrass OE, Fisher NS (2018) From migrants to mossbacks: tracer-and tag-inferred habitat shifts in the California yellowtail Seriola dorsalis. Mar Ecol Prog Ser 597:221–230

    CAS  Google Scholar 

  • Magozzi S, Vander Zanden HB, Wunder MB, Bowen GJ (2019) Mechanistic model predicts tissue–environment relationships and trophic shifts in animal hydrogen and oxygen isotope ratios. Oecologia. https://doi.org/10.1007/s00442-019-04532-8

    Article  PubMed  Google Scholar 

  • Maldonado K, Bozinovic F, Newsome SD, Sabat P (2017) Testing the niche variation hypothesis in a community of passerine birds. Ecology 98:903–908

    PubMed  Google Scholar 

  • Maljković A, Côté IM (2011) Effects of tourism-related provisioning on the trophic signatures and movement patterns of an apex predator, the Caribbean reef shark. Biol Conserv 144:859–865

    Google Scholar 

  • Mammola S (2019) Assessing similarity of n-dimensional hypervolumes: which metric to use? J Biogeogr 46:2012–2023

    Google Scholar 

  • Manlick PJ, Petersen SM, Moriarty KM, Pauli JN (2019) Stable isotopes reveal limited Eltonian niche conservatism across carnivore populations. Funct Ecol 33:335–345

    Google Scholar 

  • Marshall HH, Inger R, Jackson AL, McDonald RA, Thompson FJ, Cant MA (2019) Stable isotopes are quantitative indicators of trophic niche. Ecol Lett 22:1990–1992

    PubMed  PubMed Central  Google Scholar 

  • Martínez del Rio C, Carleton SA (2012) How fast and how faithful: the dynamics of isotopic incorporation into animal tissues. J Mamm 93:353–359

    Google Scholar 

  • Martínez del Rio C, Wolf N, Carleton SA, Gannes LZ (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91–111

    Google Scholar 

  • Mateo MA, Serrano O, Serrano L, Michener RH (2008) Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia 157:105–115

    PubMed  Google Scholar 

  • Matich P, Heithaus MR (2014) Multi-tissue stable isotope analysis and acoustic telemetry reveal seasonal variability in the trophic interactions of juvenile bull sharks in a coastal estuary. J An Ecol 83:199–213

    Google Scholar 

  • Matich P, Heithaus MR (2015) Individual variation in ontogenetic niche shifts in habitat use and movement patterns of a large estuarine predator (Carcharhinus leucas). Oecologia 178:347–359

    PubMed  Google Scholar 

  • Matich P, Ault JS, Boucek RE, Bryan DR, Gastrich KR, Harvey CL et al (2017) Ecological niche partitioning within a large predator guild in a nutrient-limited estuary. Limnol Oceanogr 62:934–953

    Google Scholar 

  • Matich P, Kiszka JJ, Heithaus MR, Le Bourg B, Mourier J (2019) Inter-individual differences in ontogenetic trophic shifts among three marine predators. Oecologia. https://doi.org/10.1007/s00442-019-04357-5

    Article  PubMed  Google Scholar 

  • McCauley DJ, Young HS, Dunbar RB, Estes JA, Semmens BX, Micheli F (2012) Assessing the effects of large mobile predators on ecosystem connectivity. Ecol Appl 22:1711–1717

    PubMed  Google Scholar 

  • McMahon KW, Fogel ML, Elsdon TS, Thorrold SR (2010) Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J Anim Ecol 79:1132–1141

    PubMed  Google Scholar 

  • McMahon KW, Hamady LL, Thorrold SR (2013) A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol Oceanogr 58:697–714

    CAS  Google Scholar 

  • McMahon KW, Thorrold SR, Elsdon TS, McCarthy MD (2015) Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol Oceanogr 60:1076–1087

    CAS  Google Scholar 

  • McMeans BC, Olin JA, Benz GW (2009) Stable-isotope comparisons between embryos and mothers of a placentatrophic shark species. J Fish Biol 75:2464–2474

    CAS  PubMed  Google Scholar 

  • Mill AC, Sweeting CJ, Barnes C, Al-Habsi SH, MacNeil MA (2008) Mass-spectrometer bias in stable isotope ecology. Limnol Oceanogr Methods 6:34–39

    CAS  Google Scholar 

  • Miller TE, Rudolf VH (2011) Thinking inside the box: community-level consequences of stage-structured populations. Trends Ecol Evol 26:457–466

    PubMed  Google Scholar 

  • Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett 11:470–480

    PubMed  Google Scholar 

  • Moore JW, Gordon J, Carr-Harris C, Gottesfeld AS, Wilson SM, Russell JH (2016) Assessing estuaries as stopover habitats for juvenile Pacific salmon. Mar Ecol Prog Ser 559:201–215

    Google Scholar 

  • Nakazawa T (2015) Ontogenetic niche shifts matter in community ecology: a review and future perspectives. Popul Ecol 57:347–354

    Google Scholar 

  • Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436

    Google Scholar 

  • Newsome SD, Etnier MA, Monson DH, Fogel ML (2009) Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth. Mar Ecol Prog Ser 374:229–242

    Google Scholar 

  • Newsome SD, Yeakel JD, Wheatley PV, Tinker MT (2012) Tools for quantifying isotopic niche space and dietary variation at the individual and population level. J Mammol 93:329–341

    Google Scholar 

  • Ng JS, Wai TC, Williams GA (2007) The effects of acidification on the stable isotope signatures of marine algae and molluscs. Mar Chem 103:97–102

    CAS  Google Scholar 

  • Nielsen JM, Clare EL, Hayden B, Brett MT, Kratina P (2018) Diet tracing in ecology: method comparison and selection. Methods Ecol Evol 9:278–291

    Google Scholar 

  • Oczkowski A, Kreakie B, McKinney RA, Prezioso J (2016) Patterns in stable isotope values of nitrogen and carbon in particulate matter from the Northwest Atlantic continental shelf, from the Gulf of Maine to Cape Hatteras. Front Mar Sci 3:252

    Google Scholar 

  • Olin JA, Hussey NE, Fritts M, Heupel MR, Simpfendorfer CA, Poulakis GR, Fisk AT (2011) Maternal meddling in neonatal sharks: implications for interpreting stable isotopes in young animals. Rapid Commun Mass Sp 25:1008–1016

    CAS  Google Scholar 

  • Olin JA, Poulakis GR, Stevens PW, DeAngelo JA, Fisk AT (2014) Preservation effects on stable isotope values of archived elasmobranch fin tissue: comparisons between frozen and ethanol-stored samples. Trans Am Fish Soc 143:1569–1576

    CAS  Google Scholar 

  • Olin JA, Shipley ON, McMeans BC (2018) Stable isotope fractionation between maternal and embryo tissues in the Bonnethead shark (Sphyrna tiburo). Environ Biol Fish 101:489–499

    Google Scholar 

  • Overman NC, Parrish DL (2001) Stable isotope composition of walleye: 15N accumulation with age and area-specific differences in δ13C. Can J Fish Aquat Sci 58:1253–1260

    Google Scholar 

  • Parnell AC, Phillips DL, Bearhop S, Semmens BX, Ward EJ, Moore JW et al (2013) Bayesian stable isotope mixing models. Environmetrics 24:387–399

    Google Scholar 

  • Payo-Payo A, Ruiz B, Cardona L, Borrell A (2013) Effect of tissue decomposition on stable isotope signatures of striped dolphins Stenella coeruleoalba and loggerhead sea turtles Caretta caretta. Aquat Biol 18:141–147

    Google Scholar 

  • Perkins MJ, Mak YK, Tao LS, Wong AT, Yau JK, Baker DM, Leung KM (2018) Short-term tissue decomposition alters stable isotope values and C:N ratio, but does not change relationships between lipid content, C:N ratio, and Δδ13C in marine animals. PLoS One 13:e0199680

    PubMed  PubMed Central  Google Scholar 

  • Persson L, de Roos AM (2013) Symmetry breaking in ecological systems through different energy efficiencies of juveniles and adults. Ecology 94:1487–1498

    PubMed  Google Scholar 

  • Peterson BJ, Howarth RW, Garritt RH (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227:1361–1363

    CAS  PubMed  Google Scholar 

  • Peterson AT, Sanchez-Cordero V, Martínez-Meyer E, Navarro-Sigüenza AG (2006) Tracking population extirpations via melding ecological niche modeling with land-cover information. Ecol Model 195(3–4):229–236

    Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions (MPB-49), vol 56. Princeton University Press, Princeton

    Google Scholar 

  • Pethybridge H, Choy CA, Logan JM, Allain V, Lorrain A, Bodin N et al (2018) A global meta-analysis of marine predator nitrogen stable isotopes: relationships between trophic structure and environmental conditions. Glob Ecol Biogeogr 27:1043–1055

    Google Scholar 

  • Petta JC, Shipley ON, Wintner SP, Cliff G, Dicken ML, Hussey NE (2020) Are you really what you eat? Stomach content analysis and stable isotope ratios do not uniformly estimate dietary niche characteristics in three marine predators. Oecologia. https://doi.org/10.1007/s00442-020-04628-6

    Article  PubMed  Google Scholar 

  • Phillips DL, Newsome SD, Gregg JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527

    PubMed  Google Scholar 

  • Phillips RA, McGill RA, Dawson DA, Bearhop S (2011) Sexual segregation in distribution, diet and trophic level of seabirds: insights from stable isotope analysis. Mar Biol 158:2199–2208

    Google Scholar 

  • Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835

    Google Scholar 

  • Pinnegar JK, Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13:225–231

    Google Scholar 

  • Polissar PJ, Fulton JM, Junium CK, Turich CC, Freeman KH (2008) Measurement of 13C and 15N isotopic composition on nanomolar quantities of C and N. Anal Chem 81:755–763

    Google Scholar 

  • Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta 62:69–77

    CAS  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Google Scholar 

  • Post DM (2003) Individual variation in the timing of ontogenetic niche shifts in largemouth bass. Ecology 84:1298–1310

    Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    PubMed  Google Scholar 

  • Power M, Guiguer KRRA, Barton DR (2003) Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies. Rapid Commun Mass Spectrom 17:1619–1625

    CAS  PubMed  Google Scholar 

  • Quaeck-Davies K, Bendall VA, MacKenzie KM, Hetherington S, Newton J, Trueman CN (2018) Teleost and elasmobranch eye lenses as a target for life-history stable isotope analyses. Peer J 6:e4883

    PubMed  PubMed Central  Google Scholar 

  • Quezada-Romegialli C, Jackson AL, Hayden B, Kahilainen KK, Lopes C, Harrod C (2018) tRophicPosition, an R package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol Evol 9:1592–1599

    Google Scholar 

  • Quillfeldt P, McGill RAR, Masello JF, Weiss F, Strange IJ, Brickle P, Furness RW (2008) Stable isotope analysis reveals sexual and environmental variability and individual consistency in foraging of thin-billed prions. Mar Ecol Prog Ser 373:137–148

    Google Scholar 

  • Rader JA, Newsome SD, Sabat P, Chesser RT, Dillon ME, Martínez del Rio C (2017) Isotopic niches support the resource breadth hypothesis. J Anim Ecol 86:405–413

    PubMed  Google Scholar 

  • Reddin CJ, O’Connor NE, Harrod C (2016) Living to the range limit: consumer isotopic variation increases with environmental stress. PeerJ 4:e2034

    PubMed  PubMed Central  Google Scholar 

  • Reddin CJ, Bothwell JH, O’Connor NE, Harrod C (2018) The effects of spatial scale and isoscape on consumer isotopic niche width. Funct Ecol 32:904–915

    Google Scholar 

  • Reid WD, Sweeting CJ, Wigham BD, Zwirglmaier K, Hawkes JA, McGill RA et al (2013) Spatial differences in East Scotia Ridge hydrothermal vent food webs: influences of chemistry, microbiology and predation on trophodynamics. PLoS One 8:e65553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reid WDK, Sweeting CJ, Wigham BD, McGill RAR, Polunin NVC (2016) Isotopic niche variability in macroconsumers of the East Scotia Ridge (Southern Ocean) hydrothermal vents: what more can we learn from an ellipse? Mar Ecol Prog Ser 542:13–24

    Google Scholar 

  • Reum JC, Marshall KN (2013) Evaluating δ15N–body size relationships across taxonomic levels using hierarchical models. Oecologia 173:1159–1168

    PubMed  Google Scholar 

  • Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1:319–329

    Google Scholar 

  • Ross ST (1986) Resource partitioning in fish assemblages: a review of field studies. Copeia 1986:352–388

    Google Scholar 

  • Rossman S, Ostrom PH, Gordon F, Zipkin EF (2016) Beyond carbon and nitrogen: guidelines for estimating three-dimensional isotopic niche space. Ecol Evol 6:2405–2413

    PubMed  PubMed Central  Google Scholar 

  • Roughgarden J (1972) Evolution of niche width. Am Nat 106:683–718

    Google Scholar 

  • Roughgarden J (1979) Theory of population genetics and evolutionary ecology: an introduction. Benjamin Cummings Publishing, New York

    Google Scholar 

  • Rundel PW, Ehleringer JR, Nagy KA (eds) (2012) Stable isotopes in ecological research, vol 68. Springer Science and Business Media, New York

    Google Scholar 

  • Sánchez-Hernández J, Nunn AD, Adams CE, Amundsen PA (2018) Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models. Biol Rev 94:539–554

    PubMed  Google Scholar 

  • Schlacher TA, Connolly RM (2014) Effects of acid treatment on carbon and nitrogen stable isotope ratios in ecological samples: a review and synthesis. Methods Ecol Evol 5:541–550

    Google Scholar 

  • Schloesser RW, Rooker JR, Louchuoarn P, Neilson JD, Secord DH (2009) Interdecadal variation in seawater δ13C and δ18O recorded in fish otoliths. Limnol Oceanogr 54:1665–1668

    CAS  Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    CAS  PubMed  Google Scholar 

  • Schwieterman GD, Bouyoucos IA, Potgieter K, Simpfendorfer CA, Brill RW, Rummer JL (2019) Analysing tropical elasmobranch blood samples in the field: blood stability during storage and validation of the HemoCue® haemoglobin analyser. Conserv Physiol 7:coz081

    PubMed  PubMed Central  Google Scholar 

  • Serrano O, Serrano L, Mateo MA, Colombini I, Chelazzi L, Gagnarli E, Fallaci M (2008) Acid washing effect on elemental and isotopic composition of whole beach arthropods: implications for food web studies using stable isotopes. Acta Oecol 34:89–96

    Google Scholar 

  • Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA (2009) Evolution of ecological niche breadth. Annu Rev Ecol Evol Syst 48:183–206

    Google Scholar 

  • Sheppard CE, Inger R, McDonald RA, Barker S, Jackson AL, Thompson FJ et al (2018) Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol Lett 21:665–673

    PubMed  PubMed Central  Google Scholar 

  • Sheriff MJ, Dantzer B, Delehanty B, Palme R, Boonstra R (2011) Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166:869–887

    PubMed  Google Scholar 

  • Shipley ON, Olin JA, Polunin NV, Sweeting CJ, Newman SP, Brooks EJ et al (2017a) Polar compounds preclude mathematical lipid correction of carbon stable isotopes in deep-water sharks. J Exp Mar Biol Ecol 494:69–74

    CAS  Google Scholar 

  • Shipley ON, Murchie KJ, Frisk MG, Brooks EJ, Shea OR, Power M (2017b) Low lipid and urea effects and inter-tissue comparisons of stable isotope signatures in three nearshore elasmobranchs. Mar Ecol Prog Ser 579:233–238

    CAS  Google Scholar 

  • Shipley ON, Murchie KJ, Frisk MG, O’Shea OR, Winchester MM, Brooks EJ et al (2018) Trophic niche dynamics of three nearshore benthic predators in The Bahamas. Hydrobiologia 813:177–188

    Google Scholar 

  • Shipley ON, Lee CS, Fisher NS, Burruss G, Frisk MG, Brooks EJ et al (2019a) Trophodynamics and mercury bioaccumulation in reef and open-ocean fishes from The Bahamas with a focus on two teleost predators. Mar Ecol Prog Ser 608:221–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shipley ON, Gallagher AJ, Shiffman DS, Kaufman L, Hammerschlag N (2019b) Diverse resource-use strategies in a large-bodied marine predator guild: evidence from differential use of resource subsidies and intraspecific isotopic variation. Mar Ecol Prog Ser 623:71–83

    Google Scholar 

  • Shipley ON, Olin JA, Power M, Cerrato RM, Frisk MG (2019c) Questioning assumptions of trophic behavior in a broadly ranging marine predator guild. Ecography 42:1–13. https://doi.org/10.1111/ecog.03990

    Article  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter MBJK, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    CAS  PubMed  Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Google Scholar 

  • Skinner C, Mill AC, Newman SP, Newton J, Cobain MR, Polunin NV (2019) Novel tri-isotope ellipsoid approach reveals dietary variation in sympatric predators. Ecol Evol 9:13267–13277

    PubMed  PubMed Central  Google Scholar 

  • Slatkin M (1984) Ecological causes of sexual dimorphism. Evolution 38:622–630

    PubMed  Google Scholar 

  • Smith JA, Mazumder D, Suthers IM, Taylor MD (2013) To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol Evol 4:612–618

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1–9

    Google Scholar 

  • Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX (2018) Analyzing mixing systems using a new generation of Bayesian tracer mixing models. Peer J 6:e5096

    PubMed  PubMed Central  Google Scholar 

  • Swanson HK, Lysy M, Power M, Stasko AD, Johnson JD, Reist JD (2015) A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96:318–324

    PubMed  Google Scholar 

  • Sweeting CJ, Polunin NVC, Jennings S (2006) Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun Mass Spectrom 20:595–601

    CAS  PubMed  Google Scholar 

  • Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007) Effects of body size and environment on diet-tissue δ15N fractionation in fishes. J Exp Mar Biol Ecol 340:1–10

    CAS  Google Scholar 

  • Syväranta J, Martino A, Kopp D, Céréghino R, Santoul F (2011) Freezing and chemical preservatives alter the stable isotope values of carbon and nitrogen of the Asiatic clam (Corbicula fluminea). Hydrobiologia 658:383–388

    Google Scholar 

  • Tarroux A, Ehrich D, Lecomte N, Jardine TD, Bêty J, Berteaux D (2010) Sensitivity of stable isotope mixing models to variation in isotopic ratios: evaluating consequences of lipid extraction. Methods Ecol Evol 1:231–241

    Google Scholar 

  • Tatsch ACC, Secchi ER, Botta S (2016) Effects of acidification, lipid removal and mathematical normalization on carbon and nitrogen stable isotope compositions in beaked whale (Ziphiidae) bone. Rapid Commun Mass Spectrom 30:460–466

    CAS  PubMed  Google Scholar 

  • Tetzlaff SJ, Carter ET, DeGregorio BA, Ravesi MJ, Kingsbury BA (2017) To forage, mate, or thermoregulate: influence of resource manipulation on male rattlesnake behavior. Ecol Evol 7:6606–6613

    PubMed  PubMed Central  Google Scholar 

  • Thomas SM, Crowther TW (2015) Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. J Anim Ecol 84:861–870

    PubMed  Google Scholar 

  • Todd S, Holm B, Rosen DS, Tollit D (2010) Stable isotope signal homogeneity and differences between and within pinniped muscle and skin. Mar Mamm Sci 26:176

    Google Scholar 

  • Toft CA (1985) Resource partitioning in amphibians and reptiles. Copeia 1985:1–21

    Google Scholar 

  • Troughton JH, Card KA (1975) Temperature effects on the carbon-isotope ratio of C3, C4, and Crassulacean-acid-metabolism (CAM) plants. Planta 123:185–190

    CAS  PubMed  Google Scholar 

  • Trueman CN, Jackson AL, Chadwick KS, Coombs EJ, Feyrer LJ, Magozzi S et al (2019) Combining simulation modeling and stable isotope analyses to reconstruct the last known movements of one of Nature’s giants. PeerJ 7:e7912

    PubMed  PubMed Central  Google Scholar 

  • Turner Tomaszewicz CN, Seminoff JA, Peckham SH, Avens L, Kurle CM (2017) Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using 15N values from bone growth rings. J Anim Ecol 83:694–704

    Google Scholar 

  • Turner TF, Collyer ML, Krabbenhoft TJ (2010) A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology 91:2227–2233

    PubMed  Google Scholar 

  • Tyrrell LP, Newsome SD, Fogel ML, Viens M, Bowden R, Murray MJ (2013) Vibrissae growth rates and trophic discrimination factors in captive southern sea otters (Enhydra lutris nereis). J Mammal 94:331–338

    Google Scholar 

  • Vafeiadou AM, Adão H, De Troch M, Moens T (2013) Sample acidification effects on carbon and nitrogen stable isotope ratios of macrofauna from a Zostera noltii bed. Mar Freshw Res 64:741–745

    CAS  Google Scholar 

  • Vander Zanden MJ, Clayton MK, Moody EK, Solomon CT, Weidel BC (2015) Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS One 10:e0116182

    PubMed  PubMed Central  Google Scholar 

  • Vaudo JJ, Matich P, Heithaus MR (2010) Mother-offspring isotope fractionation in two species of placentatrophic sharks. J Fish Biol 77:1724–1727

    CAS  PubMed  Google Scholar 

  • Villamarín F, Jardine TD, Bunn SE, Marioni B, Magnusson WE (2018) Body size is more important than diet in determining stable-isotope estimates of trophic position in crocodilians. Sci Rep 8:2020

    PubMed  PubMed Central  Google Scholar 

  • Vincent SE, Moon BR, Herrel A, Kley NJ (2007) Are ontogenetic shifts in diet linked to shifts in feeding mechanics? Scaling of the feeding apparatus in the banded watersnake Nerodia fasciata. J Exp Biol 210:2057–2069

    PubMed  Google Scholar 

  • Wearmouth VJ, Sims DW (2008) Sexual segregation in marine fish, reptiles, birds and mammals: behaviour patterns, mechanisms and conservation implications. Adv Mar Biol 54:107–170

    PubMed  Google Scholar 

  • Weideli OC, Kiszka JJ, Matich P, Heithaus MR (2019) Effects of anticoagulants on stable isotope values (δ13C and δ15N) of shark blood components. J Fish Biol. https://doi.org/10.1111/jfb.14164

    Article  PubMed  Google Scholar 

  • Weigand MA, Foriel J, Barnett B, Oleynik S, Sigman DM (2016) Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun Mass Spectrom 30:1365–1383

    CAS  PubMed  Google Scholar 

  • Wells RMG, Dunphy BJ (2009) Potential impact of metabolic acidosis on the fixed-acid Bohr effects in snapper (Pagrus auratus) following angling stress. Comp Biochem Physiol A 154:56–60

    CAS  Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425

    Google Scholar 

  • West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21:408–414

    PubMed  Google Scholar 

  • Wheeler TA, Kavanagh KL (2017) Soil biogeochemical responses to the deposition of anadromous fish carcasses in inland riparian forests of the Pacific Northwest, USA. Can J For Res 47:1506–1516

    CAS  Google Scholar 

  • Widler SM, Raubenheimer D, Simpson SJ (2016) Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Funct Ecol 30:108–115

    Google Scholar 

  • Wolf N, Carleton SA, Martínez del Rio C (2009) Ten years of experimental animal isotopic ecology. Funct Ecol 23:17–26

    Google Scholar 

  • Wong WW, Sackett WM (1978) Fractionation of stable carbon isotopes by marine phytoplankton. Geochim Cosmochim Acta 42:1809–1815

    CAS  Google Scholar 

  • Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074

    Google Scholar 

  • Xu W, Chen X, Liu B, Chen Y, Huan M, Liu N, Lin J (2019) Inter-individual variation in trophic history of Dosidicus gigas, as indicated by stable isotopes in eye lenses. Aquacult Fish 4:261–267

    Google Scholar 

  • Yoder CJ, Bartelink EJ (2010) Effects of different sample preparation methods on stable carbon and oxygen isotope values of bone apatite: a comparison of two treatment protocols. Archaeometry 52:115–130

    CAS  Google Scholar 

  • Yurkowski DJ, Hussey NE, Semeniuk C, Ferguson SH, Fisk AT (2015) Effects of lipid extraction and the utility of lipid normalization models on δ13C and δ15N values in Arctic marine mammal tissues. Polar Biol 38:131–143

    Google Scholar 

  • Yurkowski DJ, Hussey NE, Fisk AT et al (2017a) Temporal shifts in intraguild predation pressure between beluga whales and Greenland halibut in a changing Arctic. Biol Lett 13:20170433

    PubMed  PubMed Central  Google Scholar 

  • Yurkowski DJ, Hussey AJ, Hussey NE, Fisk AT (2017b) Effects of decomposition on carbon and nitrogen stable isotope values of muscle tissue of varying lipid content from three aquatic vertebrate species. Rapid Commun Mass Spectrom 31:389–395

    CAS  PubMed  Google Scholar 

  • Zaccarelli N, Bolnick DI, Mancinelli G (2013) RI n S p: an r package for the analysis of individual specialization in resource use. Methods Ecol Evol 4:1018–1023

    Google Scholar 

  • Zanden MJV, Rasmussen JB (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066

    Google Scholar 

  • Zeichner SS, Colman AS, Koch PL, Polo-Silva C, Galván-Magaña F, Kim SL (2017) Discrimination factors and incorporation rates for organic matrix in shark teeth based on a captive feeding study. Physiol Biochem Zool 90:257–272

    CAS  PubMed  Google Scholar 

  • Zhu Y, Newman SP, Reid WD, Polunin NV (2019) Fish stable isotope community structure of a Bahamian coral reef. Mar Biol 166:160

    Google Scholar 

Download references

Acknowledgements

We thank Stony Brook University and Texas A&M University at Galveston for support, and comments from J. Bizzarro and anonymous reviewers that greatly strengthened this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ONS and PM devised project concept, conducted literature synthesis, and wrote the manuscript. Both authors approved the final manuscript.

Corresponding author

Correspondence to Oliver N. Shipley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Joel Trexler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shipley, O.N., Matich, P. Studying animal niches using bulk stable isotope ratios: an updated synthesis. Oecologia 193, 27–51 (2020). https://doi.org/10.1007/s00442-020-04654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-020-04654-4

Keywords

Navigation