Assessing amphibian disease risk across tropical streams while accounting for imperfect pathogen detection

Abstract

Ecologists studying emerging wildlife diseases need to confront the realism of imperfect pathogen detection across heterogeneous habitats to aid in conservation decisions. For example, spatial risk assessments of amphibian disease caused by Batrachochytrium dendrobatidis (Bd) has largely ignored imperfect pathogen detection across sampling sites. Because changes in pathogenicity and host susceptibility could trigger recurrent population declines, it is imperative to understand how pathogen prevalence and occupancy vary across environmental gradients. Here, we assessed how Bd occurrence, prevalence, and infection intensity in a diverse Neotropical landscape vary across streams in relation to abiotic and biotic predictors using a hierarchical Bayesian model that accounts for imperfect Bd detection caused by qPCR error. Our model indicated that the number of streams harboring Bd-infected frogs is higher than observed, with Bd likely being present at ~ 43% more streams than it was detected. We found that terrestrial-breeders captured along streams had higher Bd prevalence, but lower infection intensity, than aquatic-breeding species. We found a positive relationship between Bd occupancy probability and stream density, and a negative relationship between Bd occupancy probability and amphibian local richness. Forest cover was a weak predictor of Bd occurrence and infection intensity. Finally, we provide estimates for the minimum number of amphibian captures needed to determine the presence of Bd at a given site where Bd occurs, thus, providing guidence for cost-effective disease risk monitoring programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams AJ, Kupferberg SJ, Wilber MQ et al (2017) Extreme drought, host density, sex, and bullfrogs influence fungal pathogen infection in a declining lotic amphibian. Ecosphere 8:e01740. https://doi.org/10.1002/ecs2.1740

    Article  Google Scholar 

  2. Adams MJ, Chelgren ND, Reinitz D et al (2010) Using occupancy models to understand the distribution of an amphibian pathogen, Batrachochytrium dendrobatidis. Ecol Appl 20:289–302. https://doi.org/10.1890/08-2319.1

    Article  PubMed  Google Scholar 

  3. Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  4. Araujo CO, Matsukuma CK, Santos SMA (2013) Composição taxonômica e distribuição de anuros no Alto e Médio Paranapanema, estado de São Paulo. Biota Neotrop 13:241–258. https://doi.org/10.1590/S1676-06032013000300027

    Article  Google Scholar 

  5. Becker CG, Zamudio KR (2011) Tropical amphibian populations experience higher disease risk in natural habitats. Proc Natl Acad Sci 108:9893–9898. https://doi.org/10.1073/pnas.1014497108

    Article  PubMed  Google Scholar 

  6. Becker CG, Fonseca CR, Haddad CFB et al (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777. https://doi.org/10.1126/science.1149374

    CAS  Article  PubMed  Google Scholar 

  7. Becker CG, Rodriguez D, Longo AV et al (2012) Disease risk in temperate amphibian populations is higher at closed-canopy sites. PLoS ONE 7:e48205. https://doi.org/10.1371/journal.pone.0048205

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Becker CG, Rodriguez D, Toledo LF et al (2014) Partitioning the net effect of host diversity on an emerging amphibian pathogen. Proc R Soc B 281:20141796. https://doi.org/10.1098/rspb.2014.1796

    Article  PubMed  Google Scholar 

  9. Becker CG, Rodriguez D, Lambertini C et al (2016a) Historical dynamics of Batrachochytrium dendrobatidis in Amazonia. Ecography 39:954–960. https://doi.org/10.1111/ecog.02055

    Article  Google Scholar 

  10. Becker CG, Rodriguez D, Longo AV et al (2016b) Deforestation, host community structure, and amphibian disease risk. Basic Appl Ecol 17:72–80. https://doi.org/10.1016/j.baae.2015.08.004

    Article  Google Scholar 

  11. Becker CG, Longo AV, Haddad CFB, Zamudio KR (2017) Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc R Soc B 284:20170582. https://doi.org/10.1098/rspb.2017.0582

    Article  PubMed  Google Scholar 

  12. Boyle DG, Boyle DB, Olsen V et al (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ 60:141–148. https://doi.org/10.3354/dao060141

    CAS  Article  PubMed  Google Scholar 

  13. Brem FMR, Lips KR (2008) Batrachochytrium dendrobatidis infection patterns among Panamanian amphibian species, habitats and elevations during epizootic and enzootic stages. Dis Aquat Organ 81:189–202. https://doi.org/10.3354/dao01960

    Article  PubMed  Google Scholar 

  14. Carvalho T, Becker CG, Toledo LF (2017) Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc R Soc London B 284:20162254. https://doi.org/10.1098/rspb.2016.2254

    Article  Google Scholar 

  15. Chestnut T, Anderson C, Popa R et al (2014) Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America. PLoS ONE 9:e106790. https://doi.org/10.1371/journal.pone.0106790

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Civitello DJ, Cohen J, Fatima H et al (2015) Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc Natl Acad Sci 112:8667–8671. https://doi.org/10.1073/pnas.1506279112

    CAS  Article  PubMed  Google Scholar 

  17. Cohen JM, Civitello DJ, Brace AJ et al (2016) Spatial scale modulates the strength of ecological processes driving disease distributions. Proc Natl Acad Sci 113:E3359–E3364. https://doi.org/10.1073/pnas.1521657113

    CAS  Article  PubMed  Google Scholar 

  18. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449. https://doi.org/10.1126/science.287.5452.443

    CAS  Article  PubMed  Google Scholar 

  19. DiRenzo GV, Che-Castaldo C, Rugenski A et al (2017) Disassembly of a tadpole community by a multi-host fungal pathogen with limited evidence of recovery. Ecol Appl 27:309–320. https://doi.org/10.1002/eap.1443

    Article  PubMed  Google Scholar 

  20. DiRenzo GV, Che-Castaldo C, Saunders SP et al (2019) Disease-structured N-mixture models: a practical guide to model disease dynamics using count data. Ecol Evol 9:899–909. https://doi.org/10.1002/ece3.4849

    Article  PubMed  PubMed Central  Google Scholar 

  21. DiRenzo GV, Grant EHC, Longo AV et al (2018) Imperfect pathogen detection from non-invasive skin swabs biases disease inference. Methods Ecol Evol 9:380–389. https://doi.org/10.1111/2041-210X.12868

    Article  Google Scholar 

  22. DiRenzo GV, Langhammer PF, Zamudio KR, Lips KR (2014) Fungal infection intensity and zoospore output of Atelopus zeteki, a potential acute chytrid supershedder. PLoS ONE 9:e93356. https://doi.org/10.1371/journal.pone.0093356

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. EMPLASA (2011) Projeto de Atualização Cartográfica do Estado de São Paulo: Projeto Mapeia São Paulo, São Paulo

  24. ESRI (2015) ArcGIS Professional GIS for the desktop, version 10.3.1

  25. Ficetola GF, Padoa-Schioppa E, De Bernardi F (2009) Influence of landscape elements in riparian buffers on the conservation of semiaquatic amphibians. Conserv Biol 23:114–123. https://doi.org/10.1111/j.1523-1739.2008.01081.x

    Article  PubMed  Google Scholar 

  26. Fisher MC, Henk DA, Briggs CJ et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. https://doi.org/10.1038/nature10947

    CAS  Article  Google Scholar 

  27. Gelman A, Simpson D, Betancourt M (2017) The prior can often only be understood in the context of the likelihood. Entropy 19:555. https://doi.org/10.3390/e19100555

    Article  Google Scholar 

  28. Greenspan SE, Lambertini C, Carvalho T et al (2018) Hybrids of amphibian chytrid show high virulence in native hosts. Sci Rep 8:9600. https://doi.org/10.1038/s41598-018-27828-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Gründler MC, Toledo LF, Parra-Olea G et al (2012) Interaction between breeding habitat and elevation affects prevalence but not infection intensity of Batrachochytrium dendrobatidis in Brazilian anuran assemblages. Dis Aquat Organ 97:173–184. https://doi.org/10.3354/dao02413

    Article  PubMed  Google Scholar 

  30. Haddad CFB, Prado CPA (2005) Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. Bioscience 55:207–217. https://doi.org/10.1641/0006-3568(2005)055[0207:rmifat]2.0.co;2

    Article  Google Scholar 

  31. Han BA, Kerby JL, Searle CL et al (2015) Host species composition influences infection severity among amphibians in the absence of spillover transmission. Ecol Evol 5:1432–1439. https://doi.org/10.1002/ece3.1385

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heyer WR, Donnelly MA, Mcdiarmid RW et al (1994) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington

    Google Scholar 

  33. Hyatt AD, Boyle DG, Olsen V et al (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Organ 73:175–192

    CAS  Article  Google Scholar 

  34. James TY, Toledo LF, Rödder D et al (2015) Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecol Evol 5:4079–4097. https://doi.org/10.1002/ece3.1672

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proc Natl Acad Sci 110:E2602–E2610. https://doi.org/10.1073/pnas.1302251110

    Article  PubMed  Google Scholar 

  36. Johnson ML, Speare R (2003) Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control implications. Emerg Infect Dis 9:922–925. https://doi.org/10.3201/eid0908.030145

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnson ML, Speare R (2005) Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Dis Aquat Organ 65:181–186. https://doi.org/10.3354/dao065181

    Article  PubMed  Google Scholar 

  38. Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–993. https://doi.org/10.1038/nature06536

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498. https://doi.org/10.1111/j.1461-0248.2006.00885.x

    CAS  Article  PubMed  Google Scholar 

  40. Kellner K (2016) jagsUI: a wrapper around rjags to streamline JAGS analyses. R package version 1(3):1

    Google Scholar 

  41. Kéry M, Schaub M (2012) Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic Press, Amsterdam

    Google Scholar 

  42. Kilpatrick AM, Briggs CJ, Daszak P (2010) The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol Evol 25:109–118. https://doi.org/10.1016/j.tree.2009.07.011

    Article  PubMed  Google Scholar 

  43. Kriger KM, Ashton KJ, Hines HB, Hero J (2007) On the biological relevance of a single Batrachochytrium dendrobatidis zoospore: a reply to Smith (2007). Dis Aquat Organ 73:257–260. https://doi.org/10.3354/dao073257

    CAS  Article  PubMed  Google Scholar 

  44. Kriger KM, Hero J-M (2007) The chytrid fungus Batrachochytrium dendrobatidis is non-randomly distributed across amphibian breeding habitats. Divers Distrib 13:781–788. https://doi.org/10.1111/j.1472-4642.2007.00394.x

    Article  Google Scholar 

  45. Kriger KM, Hines HB, Hyatt AD et al (2006) Techniques for detecting chytridiomycosis in wild frogs: comparing histology with real-time Taqman PCR. Dis Aquat Organ 71:141–148. https://doi.org/10.3354/dao071141

    CAS  Article  PubMed  Google Scholar 

  46. Kronka FJN, Nalon MA, Matsukuma CK et al (2005) Inventário florestal da vegetação natural do estado de São Paulo. ecretaria do Meio Ambiente. Instituto Florestal, São Paulo

    Google Scholar 

  47. Lips KR, Reeve JD, Witters LR (2003) Ecological traits predicting amphibian population declines in Central America. Conserv Biol 17:1078–1088. https://doi.org/10.1046/j.1523-1739.2003.01623.x

    Article  Google Scholar 

  48. Longcore JE, Pessier AP (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227. https://doi.org/10.2307/3761366

    Article  Google Scholar 

  49. Lunn D, Jackson C, Best N et al (2012) The BUGS book: a practical introduction to Bayesian analysis. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  50. Mackenzie DI, Nichols JD, Lachman GB et al (2002) Estimating site occupancy rate when detection probabilities are less than one. Ecology 83:2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2

    Article  Google Scholar 

  51. Mesquita AFC, Lambertini C, Lyra M et al (2017) Low resistance to chytridiomycosis in direct-developing amphibians. Sci Rep 7:16605. https://doi.org/10.1038/s41598-017-16425-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Miller DAW, Talley BL, Lips KR, Campbell Grant EH (2012) Estimating patterns and drivers of infection prevalence and intensity when detection is imperfect and sampling error occurs. Methods Ecol Evol 3:850–859. https://doi.org/10.1111/j.2041-210X.2012.00216.x

    Article  Google Scholar 

  53. Mörner T, Obendorf DL, Artois M, Woodford MH (2002) Surveillance and monitoring of wildlife diseases. Rev Sci Tech Off Int des Epizoot 21:67–76. https://doi.org/10.20506/rst.21.1.1321

    Article  Google Scholar 

  54. Mosher BA, Brand AB, Wiewel ANM et al (2019) Estimating occurrence, prevalence, and detection of amphibians pathogens: Insights from the occupancy models. J Wildl Dis. https://doi.org/10.7589/2018-02-042

    Article  PubMed  Google Scholar 

  55. Olson DH, Aanensen DM, Ronnenberg KL et al (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8:e56802. https://doi.org/10.1371/journal.pone.0056802

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Olson DH, Ronnenberg KL (2014) Global Bd mapping project: 2014 update. FrogLog 22:17–21

    Google Scholar 

  57. Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15. https://doi.org/10.1080/15572536.2005.11832990

    Article  PubMed  Google Scholar 

  58. Ostfeld RS, Keesing F (2012) Effects of host diversity on infectious disease. Annu Rev Ecol Evol Syst 43:157–182. https://doi.org/10.1146/annurev-ecolsys-102710-145022

    Article  Google Scholar 

  59. Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A (eds) Proceedings of the 3rd international workshop on distributed statistical computing, vol. 124. Technische Universit at Wien, Vienna, Austria, pp 1–10

    Google Scholar 

  60. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  61. Ribeiro JW, Siqueira T, Brejão GL, Zipkin EF (2018) Effects of agriculture and topography on tropical amphibian species and communities. Ecol Appl 28:1554–1564. https://doi.org/10.1002/eap.1741

    Article  PubMed  Google Scholar 

  62. Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  63. Royle JA (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60:108–115. https://doi.org/10.1111/j.0006-341X.2004.00142.x

    Article  PubMed  Google Scholar 

  64. Ruggeri J, de Carvalho-e-Silva SP, James TY, Toledo LF (2018) Amphibian chytrid infection is influenced by rainfall seasonality and water availability. Dis Aquat Organ 127:107–115. https://doi.org/10.3354/dao03191

    Article  PubMed  Google Scholar 

  65. Ruiz-Gutiérrez V, Zipkin EF, Dhondt AA (2010) Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non-forest species. J Appl Ecol 47:621–630. https://doi.org/10.1111/j.1365-2664.2010.01811.x

    Article  Google Scholar 

  66. Scheele BC, Driscoll DA, Fischer J et al (2015) Landscape context influences chytrid fungus distribution in an endangered European amphibian. Anim Conserv 18:480–488. https://doi.org/10.1111/acv.12199

    Article  Google Scholar 

  67. Scheele BC, Hunter DA, Brannelly LA et al (2017) Reservoir-host amplification of disease impact in an endangered amphibian. Conserv Biol 31:592–600. https://doi.org/10.1111/cobi.12830

    Article  PubMed  Google Scholar 

  68. Scheele BC, Pasmans F, Skerratt LF et al (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363:1459–1463. https://doi.org/10.1126/science.aav0379

    CAS  Article  PubMed  Google Scholar 

  69. Searle CL, Biga LM, Spatafora JW, Blaustein AR (2011) A dilution effect in the emerging amphibian pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci 108:16322–16326. https://doi.org/10.1073/pnas.1108490108

    Article  PubMed  Google Scholar 

  70. Skerratt LF, Berger L, Speare R et al (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134. https://doi.org/10.1007/s10393-007-0093-5

    Article  Google Scholar 

  71. Sokal RR, Rohlf FJ (1994) Biometry: the principles and practices of statistics in biological research. W.H. Freeman and Company, San Francisco

    Google Scholar 

  72. Todd BD (2007) Parasites lost? An overlooked hypothesis for the evolution of alternative reproductive strategies in amphibians. Am Nat 170:793–799. https://doi.org/10.1086/521958

    Article  PubMed  Google Scholar 

  73. Toledo LF, Becker CG, Haddad CFB, Zamudio KR (2014) Rarity as an indicator of endangerment in neotropical frogs. Biol Conserv 179:54–62. https://doi.org/10.1016/j.biocon.2014.08.012

    Article  Google Scholar 

  74. Van Dogen S (2006) Prior specification in Bayesian statistics: three cautionary tales. J Theor Biol 242:90–100. https://doi.org/10.1016/j.jtbi.2006.02.002

    Article  Google Scholar 

  75. Venesky MD, Liu X, Sauer EL, Rohr JR (2014) Linking manipulative experiments to field data to test the dilution effect. J Anim Ecol 83:557–565. https://doi.org/10.1111/1365-2656.12159

    Article  PubMed  Google Scholar 

  76. Vieira CA, Toledo LF (2012) Isolamento, cultivo e armazenamento do fungo quitrídio: Batrachochytrium dendrobatidis. Herpetol Bras 1:18–19

    Google Scholar 

  77. Voyles J, Johnson LR, Rohr J et al (2017) Diversity in growth patterns among strains of the lethal fungal pathogen Batrachochytrium dendrobatidis across extended thermal optima. Oecologia 184:363–373. https://doi.org/10.1007/s00442-017-3866-8

    Article  PubMed  PubMed Central  Google Scholar 

  78. Woodhams DC, Alford RA, Briggs CJ et al (2008) Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology 89:1627–1639. https://doi.org/10.1890/06-1842.1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. R. da Silva, L. C. Schiesari, P. L. A. Silva, V. S. Saito, B. P. de Azevedo and the Zipkin lab for valuable discussions and suggestions for the manuscript. We thank G. L. Brejão and E. P. dos Santos for the valuable help with GIS analysis. We also thank N. R. F. Lara, B. P. de Azevedo, J. A. Domini, R. A., Brassaloti, C. F. Sanches, M. Tassoni-Filho, F. F. Frigeri, and R. Cioci for help with fieldwork. We thank A. Mesquita for help with DNA extractions. JWRJ thanks São Paulo Research Foundation (FAPESP) and Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarship: JWRJ was supported by grants #2014/07113-8 and #2016/07469-2, São Paulo Research Foundation (FAPESP). GVD was supported by a National Science Foundation Postdoctoral research grant (#1611692). LFT was supported by grants #2016/25358-3, São Paulo Research Foundation (FAPESP) and #300896/2016-6 (CNPq). TS was supported by grant #2013/50424-1, São Paulo Research Foundation (FAPESP). CFBH was supported by grants #2013/50741-7 (FAPESP) and #306623/2018-8 (CNPq). CGB was supported by the Department of Biological Sciences at the University of Alabama. We thank Rufford Small Grant (# 16419-1) and Idea Wild for supporting our study.

Author information

Affiliations

Authors

Contributions

JWRJ, TS and CGB conceived and designed the study. JWRJ led the fieldwork. JWRJ, CL, MLL and LFT performed the molecular analyses. JWRJ, TS, GVD and CGB conducted the statistical analyses and developed the Bayesian hierarchical model. JWRJ led manuscript writing, with important contributions from all coauthors. JWRJ, TS, GVD, CL, MLL, LFT, CFBH and CGB contributed critically to the drafts and reviews.

Corresponding author

Correspondence to José Wagner Ribeiro Jr..

Additional information

Communicated by Lisa Belden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, J.W., Siqueira, T., DiRenzo, G.V. et al. Assessing amphibian disease risk across tropical streams while accounting for imperfect pathogen detection. Oecologia 193, 237–248 (2020). https://doi.org/10.1007/s00442-020-04646-4

Download citation

Keywords

  • Batrachochytrium dendrobatidis
  • Atlantic forest
  • Amphibian disease
  • Tropical streams
  • Bayesian hierarchical model