Population projections of an endangered cactus suggest little impact of climate change

Abstract

Population projections coupled with downscaled climate projections are a powerful tool that allows predicting future population dynamics of vulnerable plants in the face of a changing climate. Traditional approaches used to predict the vulnerability of plants to climate change (e.g. species distribution models) fail to mechanistically describe the basis of a population’s dynamics and thus cannot be expected to correctly predict its temporal trends. In this study, we used a 23-year demographic dataset of the acuña cactus, an endangered species, to predict its population dynamics to the end of the century. We used integral projection models to describe its vital rates and population dynamics in relation to plant volume and key climatic variables. We used the resulting climate-driven IPM along with climatic projections to predict the population growth rates from 1991 to 2099. We found the average population growth rate of this population between 1991 and 2013 to be 0.70 (95% CI 0.61–0.79). This result confirms that the population of acuña cactus has been declining and that this decline is due to demographic structure and climate conditions. However, the projection model also predicts that, up to 2080, the population will remain relatively stable mainly due to the survival of its existing adult individuals. Notwithstanding, the long-term viability of the populations can only be achieved through the recruitment of new individuals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alcorn SM, Kurtz EB (1959) Some factors affecting the germination of seed of the Saguaro Cactus (Carnegiea gigantea). Am J Bot 46:526–529. https://doi.org/10.2307/2439624

    CAS  Article  Google Scholar 

  2. Allen PS, Benech-Arnold RL, Batlla D, Bradford KJ (2007) Modelling of seed dormancy. In: Bradford KHN (ed) Seed development, dormancy, and germination, vol 27. Blackwell Publishing Ltd., Oxford, UK, pp 72–112

    Google Scholar 

  3. Alvarado V, Bradford KJ (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ 25:1061–1069. https://doi.org/10.1046/j.1365-3040.2002.00894.x

    Article  Google Scholar 

  4. Buskirk WH (1981) Status of the Acuña cactus, (Neolloydia erectocentra var. acunensis) at Organ Pipe Cactus National Monument, Arizona: a progress report. Report to the National Park Service

  5. Bolker BM (2008) Ecological models and data in R. Princeton University Press, Princeton

    Google Scholar 

  6. Butler CJ, Wheeler EA, Stabler LB (2012) Distribution of the threatened lace hedgehog cactus (Echinocereus reichenbachii) under various climate change scenarios. J Torrey Bot Soc 139:46–55. https://doi.org/10.3159/TORREY-D-11-00049.1

    Article  Google Scholar 

  7. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  8. Carrillo-Angeles IG, Suzán-Azpiri H, Mandujano MC, Golubov J, Martínez-Ávalos JG (2016) Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae). J Arid Environ 124:310–317. https://doi.org/10.1016/j.jaridenv.2015.09.001

    Article  Google Scholar 

  9. Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  10. Christensen NS, Lettenmaier DP (2007) A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrol Earth Syst Sci 11:1417–1434. https://doi.org/10.5194/hess-11-1417-2007

    Article  Google Scholar 

  11. Clutton-Brock T, Sheldon BC (2010) Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25:562–573. https://doi.org/10.1016/j.tree.2010.08.002

    Article  Google Scholar 

  12. Core Team R (2016) R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna

    Google Scholar 

  13. Dahlgren JP, Ehrlén J (2009) Linking environmental variation to population dynamics of a forest herb. J Ecol 97:666–674. https://doi.org/10.1111/j.1365-2745.2009.01504.x

    Article  Google Scholar 

  14. Dalgleish HJ, Koons DN, Hooten MB, Moffet CA, Adler PB (2011) Climate influences the demography of three dominant sagebrush steppe plants. Ecology 92:75–85. https://doi.org/10.1890/10-0780.1

    Article  PubMed  Google Scholar 

  15. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58. https://doi.org/10.1126/science.1200303

    CAS  Article  PubMed  Google Scholar 

  16. Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity: Applying a new structured population model. Ecology 81:694–708

    Article  Google Scholar 

  17. Ehrlén J, Morris WF (2015) Predicting changes in the distribution and abundance of species under environmental change. Ecol Lett 18:303–314. https://doi.org/10.1111/ele.12410

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ehrlén J, Morris WF, Euler T, Dahlgren JP (2016) Advancing environmentally explicit structured population models of plants. J Ecol 104:292–305. https://doi.org/10.1111/1365-2745.12523

    Article  Google Scholar 

  19. Ellner SP, Rees M, William FM, Donald LD (2006) Integral projection models for species with complex demography. Am Nat 167:410–428. https://doi.org/10.1086/499438

    Article  PubMed  Google Scholar 

  20. Ellner SP, Childs DZ, Rees M (2016) Data-driven modelling of structured populations: a practical guide to the integral projection model. Springer International Publishing, Berlin

    Google Scholar 

  21. Ferrer-Cervantes ME, Mendez-Gonzalez ME, Quintana-Ascencio PF, Dorantes A, Dzib G, Duran R (2012) Population dynamics of the cactus Mammillaria gaumeri: an integral projection model approach. Popul Ecol 54:321–334. https://doi.org/10.1007/s10144-012-0308-7

    Article  Google Scholar 

  22. Flesch AD, Rosen PC, Holm P (2017) Long-term changes in abundances of Sonoran Desert lizards reveal complex responses to climatic variation. Glob Change Biol 23:5492–5508. https://doi.org/10.1111/gcb.13813

    Article  Google Scholar 

  23. Gao Y, Leung LR, Salathé EP, Dominguez F, Nijssen B, Lettenmaier DP (2012) Moisture flux convergence in regional and global climate models: Implications for droughts in the southwestern United States under climate change. Geophys Res Lett. https://doi.org/10.1029/2012gl051560

    Article  Google Scholar 

  24. Godínez-Álvarez H, Valverde T, Ortega-Baes P (2003) Demographic trends in the Cactaceae. Bot Rev 69:173–203

    Article  Google Scholar 

  25. González EJ, Martorell C, Bolker BM (2016) Inverse estimation of integral projection model parameters using time series of population-level data. Methods Ecol Evol 7:147–156. https://doi.org/10.1111/2041-210X.12519

    Article  Google Scholar 

  26. Holm P (2014) Ecological Monitoring Program Report 1997–2005, vol. Chapter 2. Organ Pipe Cactus National Monument, Ajo, Arizona

  27. IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field CB, Barros DJ, Dokken KJ, Mach MD, Mastrandrea TE, Bilir M, Chatterjee KL, Ebi,YO, Estrada RC, Genova B, Girma ES, Kissel AN, Levy S, MacCracken PR, Mastrandrea, White LL (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  28. Johnson RA (1992) Pollination and reproductive ecology of acuña cactus, Echinomastus erectrocentrus var. acunensis (Cactaceae). Int J Plant Sci 153:400–408

    Article  Google Scholar 

  29. Kearney MR, Wintle BA, Porter WP (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv Lett 3:203–213. https://doi.org/10.1111/j.1755-263X.2010.00097.x

    Article  Google Scholar 

  30. Maurer EP, Brekke L, Pruitt T, Duffy PB (2007) Fine-resolution climate projections enhance regional climate change impact studies. Eos Trans Am Geophys Union 88:504–504. https://doi.org/10.1029/2007EO470006

    Article  Google Scholar 

  31. Mazzerole MJ (2017) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R Package version pp 2.2–2

  32. Merow C et al (2014) Advancing population ecology with integral projection models: a practical guide. Methods Ecol Evol 5:99–110. https://doi.org/10.1111/2041-210X.12146

    Article  Google Scholar 

  33. Metcalf CJE et al (2015) Statistical modelling of annual variation for inference on stochastic population dynamics using Integral Projection Models. Methods Ecol Evol 6:1007–1017. https://doi.org/10.1111/2041-210X.12405

    Article  Google Scholar 

  34. Munson SM, Webb RH, Belnap J, Andrew Hubbard J, Swann DE, Rutman S (2012) Forecasting climate change impacts to plant community composition in the Sonoran Desert region. Glob Change Biol 18:1083–1095. https://doi.org/10.1111/j.1365-2486.2011.02598.x

    Article  Google Scholar 

  35. Nobel PS (1985) Desert succulents. In: Chabot BF, Mooney HA (eds) Physiological ecology of north american plant communities. Springer, Netherlands, pp 181–197

    Google Scholar 

  36. Overpeck J et al. (2013) Summary for Decision Makers. In: G. Garfin, A. Jardine, R. Merideth, M. Black, LeRoy S (eds) Assessment of Climate Change in the Southwest United States: a report prepared for the National Climate Assessment. Island Press, Washington, DC, pp 1–20

  37. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

    Article  Google Scholar 

  38. Phillips III AM, Buskirk WH (1982) Status of the Acuña cactus, (Neolloydia erectocentra var. acunensis) and Ajo rock daisy (Perityle ajoensis) at Organ Pipe Cactus National Monument, Arizona. Report to the National Park Service

  39. Picard N, Chagneau P, Mortier F, Bar-Hen A (2009) Finding confidence limits on population growth rates: bootstrap and analytic methods. Math Biosci 219:23–31. https://doi.org/10.1016/j.mbs.2009.02.002

    Article  PubMed  Google Scholar 

  40. R Core Team (2018) R: a language and environment for statistical computing. Computing RFfS. R Core Team, Vienna

    Google Scholar 

  41. Reading CJ et al (2010) Are snake populations in widespread decline? Biol Lett. https://doi.org/10.1098/rsbl.2010.0373

    Article  PubMed  PubMed Central  Google Scholar 

  42. Reclamation (2013) Downscaled CMIP3 and CMIP5 Climate projections: release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs. U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver, Colorado, p 116

  43. Rojas-Aréchiga M, Vázquez-Yanes C (2000) Cactus seed germination: a review. J Arid Environ 44:85–104. https://doi.org/10.1006/jare.1999.0582

    Article  Google Scholar 

  44. Rosen PC (2000) A monitoring study of vertebrate community ecology in the northern Sonoran Desert. University of Arizona, Tucson, p 307

    Google Scholar 

  45. Rosen PC, Lowe C (1996) Ecology of the amphibians and reptiles at Organ Pipe Cactus National Monument, Arizona. Cooperative Park Studies Unit, National Biological Service, University of Arizona, Tucson. Tech. Rep. 53., p 136

  46. Ruffner Associates (1995) Special-status plants monitoring protocol for the Ecological Monitoring Program in Organ Pipe Cactus National Monument, Arizona. Organ Pipe Cactus National Monument Ecological Monitoring Program Monitoring Protocol Manual, Special Report No. 11, Cooperative Park Studies Unit. University of Arizona, Tucson, pp 1:1–39

  47. Sala OE et al (2000) global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770

    CAS  Article  PubMed  Google Scholar 

  48. Salguero-Gómez R, Siewert W, Casper BB, Tielbörger K (2012) A demographic approach to study effects of climate change in desert plants. Philos Trans R Soc B 367:3100–3114. https://doi.org/10.1098/rstb.2012.0074

    Article  Google Scholar 

  49. Seager R et al (2007) Model projections of an imminent transition to a more arid climate in Southwestern North America. Science 316:1181–1184. https://doi.org/10.1126/science.1139601

    CAS  Article  PubMed  Google Scholar 

  50. Shryock DF, Esque TC, Hughes L (2014) Population viability of Pediocactus bradyi (Cactaceae) in a changing climate. Am J Bot 101:1944–1953. https://doi.org/10.3732/ajb.1400035

    Article  PubMed  Google Scholar 

  51. Sinervo B et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899. https://doi.org/10.1126/science.1184695

    CAS  Article  PubMed  Google Scholar 

  52. Smith SD, Monson R, Anderson JE (2012) Physiological ecology of north american desert plants. Springer, Berlin

    Google Scholar 

  53. Steenbergh WF, Lowe CH (1969) Critical factors during the first years of life of the Saguaro (Cereus giganteus) at Saguaro National Monument, Arizona. Ecology 50:825–834. https://doi.org/10.2307/1933696

    Article  Google Scholar 

  54. Stillman RA, Railsback SF, Giske J, Berger U, Grimm V (2014) Making predictions in a changing world: the benefits of individual-based ecology. Bioscience 65:140–150. https://doi.org/10.1093/biosci/biu192

    Article  PubMed  PubMed Central  Google Scholar 

  55. U.S Fish and Wildlife Service (2013) Endangered and threatened wildlife and plants; endangered species status for Echinomastus erectocentrus var. acunensis (Acuna Cactus) and Pediocactus peeblesianus var. fickeiseniae (Fickeisen Plains Cactus) throughout their ranges. 78 FR 60608. In: Service UFW (ed), pp 60603–60662

  56. Vale CG, Brito JC (2015) Desert-adapted species are vulnerable to climate change: insights from the warmest region on Earth. Glob Ecol Conserv 4:369–379. https://doi.org/10.1016/j.gecco.2015.07.012

    Article  Google Scholar 

  57. Zimmerman AD, Parfitt BD (2003) Echinomastus. In: Committee FoNAE (ed) Flora of North America, North of Mexico, vol 3. Springer, New York, pp 356–357

    Google Scholar 

Download references

Acknowledgements

The authors thank the Ecological Monitoring Program of Organ Pipe Cactus National Monument and the National Park Service for providing the long-term demographic database and Charlotte Brown, Charles W. Conner, and other NPS staff and volunteers who helped collect data. EL would like to thank Pilar Navas-Parejo for providing help with the figures. The authors thank the Southwest Border Resource Protection Program for funding this study (Cooperative Agreement P16AC01027, Plant demography and vulnerability to climate change at Organ Pipe Cactus National Monument and Pinacate Biosphere Reserve).

Author information

Affiliations

Authors

Contributions

EL analysed the data and wrote the manuscript; EJG analysed the data and wrote the manuscript; PCR and PH lead fieldwork and analysed data; AP performed fieldwork. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Edgar J. González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Kendi Davies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 69017 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larios, E., González, E.J., Rosen, P.C. et al. Population projections of an endangered cactus suggest little impact of climate change. Oecologia 192, 439–448 (2020). https://doi.org/10.1007/s00442-020-04595-y

Download citation

Keywords

  • Acuña cactus
  • Climate projections
  • Long-term demography
  • Temperature
  • Precipitation