High-severity wildfire limits available floral pollen quality and bumble bee nutrition compared to mixed-severity burns

Abstract

High-severity wildfires, which can homogenize floral communities, are becoming more common relative to historic mixed-severity fire regimes in the Northern Rockies of the U.S. High-severity wildfire could negatively affect bumble bees, which are typically diet generalists, if floral species of inadequate pollen quality dominate the landscape post-burn. High-severity wildfires often require more time to return to pre-burn vegetation composition, and thus, effects of high-severity burns may persist past initial impacts. We investigated how wildfire severity (mixed- vs. high-severity) and time-since-burn affected available floral pollen quality, corbicular pollen quality, and bumble bee nutrition using percent nitrogen as a proxy for pollen quality and bumble bee nutrition. We found that community-weighted mean floral pollen nitrogen, corbicular pollen nitrogen, and bumble bee nitrogen were greater on average by 0.82%N, 0.60%N, and 1.16%N, respectively, in mixed-severity burns. This pattern of enhanced floral pollen nitrogen in mixed-severity burns was likely driven by the floral community, as community-weighted mean floral pollen percent nitrogen explained 87.4% of deviance in floral community composition. Only bee percent nitrogen varied with time-since-burn, increasing by 0.33%N per year. If these patterns persist across systems, our findings suggest that although wildfire is an essential ecosystem process, there are negative early successional impacts of high-severity wildfires on bumble bees and potentially on other pollen-dependent organisms via reductions in available pollen quality and nutrition. This work examines a previously unexplored pathway for how disturbances can influence native bee success via altering the nutritional landscape of pollen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abella SR, Fornwalt PJ (2015) Ten years of vegetation assembly after a North American mega fire. Glob Change Biol 21:789–802. https://doi.org/10.1111/gcb.12722

    Article  Google Scholar 

  2. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  3. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CMD, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324:481–484. https://doi.org/10.1126/science.1163886

    CAS  Article  PubMed  Google Scholar 

  4. Burkle LA, Myers JA, Belote RT (2015) Wildfire disturbance and productivity as drivers of plant species diversity across spatial scales. Ecosphere 6(10):202. https://doi.org/10.1890/ES15-00438.1

    Article  Google Scholar 

  5. Burkle LA, Simanonok MP, Durney JS, Myers JA, Belote RT (2019) Wildfires influence abundance, diversity, and intraspecific and interspecific trait variation of native bees and flowering plants across burned and unburned landscapes. Front Ecol Evol 7:252. https://doi.org/10.3389/fevo.2019.00252

    Article  Google Scholar 

  6. Corby-Harris V, Bowsher JH, Carr-Markell M, Carroll MJ, Centrella M, Cook SC, Couvillon M, DeGrandi-Hoffman G, Dolezal A, Jones JC, Mogren CL (2019) Emerging Themes from the ESA symposium entitled “Pollinator NUTRITION: lessons from bees at individual to landscape levels”. Bee World 96(1):1–15. https://doi.org/10.1080/0005772X.2018.1535951

    Article  Google Scholar 

  7. DiCarlo LAS, DeBano SJ, Burrows S (2019) Short-term response of two beneficial invertebrate groups to wildfire in an arid grassland ecosystem, United States. Rangel Ecol Manag 72(3):551–560. https://doi.org/10.1016/j.rama.2018.11.011

    Article  Google Scholar 

  8. Eidenshink J, Schwind B, Brewer K, Zhu Z-L Quayle, Howard BS (2007) A project for monitoring trends in burn severity. Fire Ecol Sp Issue 3(1):3–21. https://doi.org/10.4996/fireecology.0301003

    Article  Google Scholar 

  9. Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulzz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408(30):578–580. https://doi.org/10.1038/35046058

    CAS  Article  PubMed  Google Scholar 

  10. Filipiak M (2018) A better understanding of bee nutritional ecology is needed to optimize conservation strategies for wild bees—the application of ecological stoichiometry. Insects. https://doi.org/10.3390/insects9030085

    Article  PubMed  PubMed Central  Google Scholar 

  11. Galbraith SM, Cane JH, Moldenke AR, Rivers JW (2019) Wild bee diversity increases with local fire severity in a fire-prone landscape. Ecosphere 10(4):e02668. https://doi.org/10.1002/ecs2.2668

    Article  Google Scholar 

  12. Goulson D (2003) Bumblebees: their behaviour and ecology, 1st edn. Oxford University Press, USA

    Google Scholar 

  13. Hanley ME, Franco M, Pichon S, Darvill B, Goulson D (2008) Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct Ecol 22(4):592–598. https://doi.org/10.1111/j.1365-2435.2008.01415.x

    Article  Google Scholar 

  14. Hessburg PF, Smith BG, Salter RB (1999) Detecting change in forest spatial patterns from reference conditions. Ecol Appl 9:1232–1252. https://doi.org/10.1890/1051-0761(1999)009%5b1232:DCIFSP%5d2.0.CO;2

    Article  Google Scholar 

  15. Hessburg PF, Agee JK, Franklin JF (2005) Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras. For Ecol Manag 211:117–139. https://doi.org/10.1016/j.foreco.2005.02.016

    Article  Google Scholar 

  16. Hutto RL, Belote RT (2013) Distinguishing four types of monitoring based on the questions they address. For Ecol Manag 289:183–189. https://doi.org/10.1016/j.foreco.2012.10.005

    Article  Google Scholar 

  17. Kämper W, Werner PK, Hilpert A, Westphal C, Blüthgen N, Eltz T, Leonhardt SD (2016) How landscape, pollen intake and pollen quality affect colony growth in Bombus terrestris. Landsc Ecol 31(10):2245–2258. https://doi.org/10.1007/s10980-016-0395-5

    Article  Google Scholar 

  18. Kämper W, Weiner C, Kühsel S, Storm C, Thomas ELTZ, Blüthgen N (2017) Evaluating the effects of floral resource specialisation and of nitrogen regulation on the vulnerability of social bees in agricultural landscapes. Apidologie 48(3):371–383. https://doi.org/10.1007/s13592-016-0480-4

    CAS  Article  Google Scholar 

  19. Kincaid TM, Olsen AR (2011) spsurvey: spatial survey design and analysis. R package version 3.4

  20. Kitaoka TK, Nieh JC (2009) Bumble bee pollen foraging regulation: role of pollen quality, storage levels, and odor. Behav Ecol Sociobiol 63:501–510. https://doi.org/10.1007/s00265-008-0684-3

    Article  Google Scholar 

  21. Koch J (2012) Bumble bees of the western United States. US Forest Service, San Francisco, California

    Google Scholar 

  22. Kriesell L, Hilpert A, Leonhardt SD (2017) Different but the same: bumblebee species collect pollen of different plant sources but similar amino acid profiles. Apidologie 48(1):102–116. https://doi.org/10.1007/s13592-016-0454-6

    CAS  Article  Google Scholar 

  23. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13):1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  24. LaManna JA, Burkle LA, Belote RT, Myers JA. Untangling drivers of plant-pollinator community assembly across environmental species-pool, and wildfire gradients (in review)

  25. Lazarina M, Devalez J, Neokosmidis L, Sgardelis SP, Kallimanis AS, Tscheulin T, Tsalkatis P, Kourtidou M, Mizerakis V, Nakas G, Palaiologou P (2019) Moderate fire severity is best for the diversity of most of the pollinator guilds in Mediterranean pine forests. Ecology 100(3):e02615. https://doi.org/10.1002/ecy.2615

    Article  PubMed  Google Scholar 

  26. Mapalad KS, Leu D, Nieh JC (2008) Bumble bees heat up for high quality pollen. J Exp Biol 211:2239–2242. https://doi.org/10.1242/jeb.016642

    Article  PubMed  Google Scholar 

  27. Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63(4):327–366. https://doi.org/10.2307/2937150

    Article  Google Scholar 

  28. Mola JM, Williams NM (2018) Fire-induced change in floral abundance, density, and phenology benefits bumble bee foragers. Ecosphere 9(1):e02056. https://doi.org/10.1002/ecs2.2056

    Article  Google Scholar 

  29. Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin R, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: community ecology package. R package version 2.5-3.

  30. Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR, Smith AD, Reynolds DR, Edwards AS (2001) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J Appl Ecol 36:519–533. https://doi.org/10.1046/j.1365-2664.1999.00428.x

    Article  Google Scholar 

  31. Ponisio LC, Wilkin KM, M’Gonigle LK, Kulhanek K, Cook L, Thorp R, Griswold T, Kremen C (2016) Pyrodiversity begets plant-pollinator community biodiversity. Glob Change Biol 22(5):1794–1808. https://doi.org/10.1111/gcb.13236

    Article  Google Scholar 

  32. Potts SG, Vulliamy B, Dafni A, Ne’eman G, O’Toole O, Roberts C, Wilmer SP (2003) Response of plant-pollinator communities to fire: changes in diversity, abundance and floral reward structure. Oikos 101:103–112. https://doi.org/10.1034/j.1600-0706.2003.12186.x

    Article  Google Scholar 

  33. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353. https://doi.org/10.1016/j.tree.2010.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  34. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  35. Roberts DW (2016) labdsv: ordination and multivariate analysis for ecology. R package version 1.8-0.

  36. Rotheray EL, Osborne JL, Goulson D (2017) Quantifying the food requirements and effects of food stress on bumble bee colony development. J Apic Res 56(3):288–299. https://doi.org/10.1080/00218839.2017.1307712

    Article  Google Scholar 

  37. Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecolog Monogr 70(4):617–643. https://doi.org/10.1890/0012-9615(2000)070%5b0617:WGPCOP%5d2.0.CO;2

    Article  Google Scholar 

  38. Ruedenauer FA, Spaethe J, Leonhardt SD (2015) How to know which food is good for you: bumblebees use taste to discriminate between different concentrations of food differing in nutrient content. J Exp Biol 218:2233–2240. https://doi.org/10.1242/jeb.118554

    Article  PubMed  Google Scholar 

  39. Ruedenauer FA, Spaethe J, Leonhardt SD (2016) Hungry for quality—individual bumblebees forage flexibly to collect high-quality pollen. Behav Ecol Sociobiol 70:1209–1217. https://doi.org/10.1007/s00265-016-2129-8

    Article  Google Scholar 

  40. Saifuddin M, Jha S (2014) Colony-level variation in pollen collection and foraging preferences among wild-caught bumble bees (Hymenoptera: Apidae). Environ Entomol 43(2):393–401. https://doi.org/10.1603/EN13261

    Article  PubMed  Google Scholar 

  41. Simanonok MP (2018) Plant-pollinator network assembly after wildfire. PhD dissertation, Department of Ecology, Montana State University, Bozeman, Montana, USA

  42. Swanson ME, Franklin JF, Beschta RL, Crisafulli CM, DellaSala DA, Hutto RL, Lindenmayer DB, Swanson FJ (2011) The forgotten stage of forest succession: early-successional ecosystems of forest sites. Front Ecol Environ 9(2):117–125. https://doi.org/10.1890/090157

    Article  Google Scholar 

  43. Tasei JN, Aupinel P (2008) Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39:397–409. https://doi.org/10.1051/apido:2008017

    CAS  Article  Google Scholar 

  44. Travers SE (1999) Pollen performance of plants in recently burned and unburned environments. Ecology 80(7):2427–2434. https://doi.org/10.1890/0012-9658(1999)080%5b2427:PPOPIR%5d2.0.CO;2

    Article  Google Scholar 

  45. Vanderplanck M, Moerman R, Rasmont P, Lognay G, Wathelet B, Wattiez R, Michez D (2014) How does pollen chemistry impact development and feeding behavior of polylectic bees? PLoS One 9(1):e86209. https://doi.org/10.1371/journal.pone.0086209

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Vaudo AD, Patch HM, Mortensen DA, Tooker JF, Grozinger CM (2016) Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc Natl Acad Sci 113(28):E4035–E4042. https://doi.org/10.1073/pnas.1606101113

    CAS  Article  PubMed  Google Scholar 

  47. Vaudo AD, Farrell LM, Patch HM, Grozinger CM, Tooker JF (2018) Consistent pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and reproduction across different habitats. Ecol Evol 8(11):5765–5776. https://doi.org/10.1002/ece3.4115

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wan S, Huig D, Luo Y (2001) Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecol Appl 11(5):1349–1365. https://doi.org/10.1890/1051-0761(2001)011%5b1349:FEONPA%5d2.0.CO;2

    Article  Google Scholar 

  49. Woodard SH, Jha S (2017) Wild bee nutritional ecology: predicting pollinator population dynamics, movement, and services from floral resources. Curr Opin Insect Sci 21:83–90. https://doi.org/10.1016/j.cois.2017.05.011

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by The National Science Foundation (DEB 1256819) and The Graduate School at Montana State University. Field data collection assistance by Dylan Cole, Laura Heil, and Kevin Hogensen. Lab analysis assistance by Jane Klaussen. Our thanks to the reviewers whose suggestions significantly improved this manuscript.

Author information

Affiliations

Authors

Contributions

MPS and LAB conceived and designed the study. MPS performed the study and analyzed the data. MPS and LAB wrote the manuscript.

Corresponding author

Correspondence to Michael P. Simanonok.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Riccardo Bommarco.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simanonok, M.P., Burkle, L.A. High-severity wildfire limits available floral pollen quality and bumble bee nutrition compared to mixed-severity burns. Oecologia 192, 489–499 (2020). https://doi.org/10.1007/s00442-019-04577-9

Download citation

Keywords

  • Chronosequence
  • Floral resources
  • Bombus spp.
  • Pollination services
  • Pollinators