Skip to main content

Advertisement

Log in

Detrital carbon production and export in high latitude kelp forests

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The production and fate of seaweed detritus is a major unknown in the global C-budget. Knowing the quantity of detritus produced, the form it takes (size) and its timing of delivery are key to understanding its role as a resource subsidy to secondary production and/or its potential contribution to C-sequestration. We quantified the production and release of detritus from 10 Laminaria hyperborea sites in northern Norway (69.6° N). Kelp biomass averaged 770 ± 100 g C m−2 while net production reached 499 ± 50 g C m−2 year−1, with most taking place in spring when new blades were formed. Production of biomass was balanced by a similar formation of detritus (478 ± 41 g C m−2 year−1), and both were unrelated to wave exposure when compared across sites. Distal blade erosion accounted for 23% of the total detritus production and was highest during autumn and winter, while dislodgment of whole individuals and/or whole blades corresponded to 24% of the detritus production. Detachment of old blades constituted the largest source of kelp detritus, accounting for > 50% of the total detrital production. Almost 80% of the detritus from L. hyperborea was thus in the form of whole plants or blades and > 60% of that was delivered as a large pulse within 1–2 months in spring. The discrete nature of the delivery suggests that the detritus cannot be retained and consumed locally and that some is exported to adjacent deep areas where it may subsidize secondary production or become buried into deep marine sediments as blue carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullah MI, Fredriksen S (2004) Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the west coast of Norway. J Mar Biol Assoc UK 84:887–894

    Article  Google Scholar 

  • Bekkby T, Rinde E, Gundersen H, Norderhaug KM, Gitmark JK, Christie H (2014) Length, strength and water flow: relative importance of wave and current exposure on morphology in kelp Laminaria hyperborea. Mar Ecol Prog Ser 506:61–70

    Article  Google Scholar 

  • Bekkby T, Moy FE, Olsen H, Rinde E, Bodvin T, Bøe R, Steen H, Grefsrud ES, Espeland SH, Pedersen A, Jørgensen NM (2013) The Norwegian programme for mapping of marine habitats—providing knowledge and maps for ICZMP. In: Moksness E, Dahl E, Støttrup J (eds) Global challenges in integrated coastal zone management, vol II. John Wiley & Sons Ltd., Oxford

    Google Scholar 

  • Carr MH, Neigel JE, Estes JA, Andelman S, Warner RR, Largier JL (2003) Comparing marine and terrestrial ecosystems: implications for the design of coastal marine reserves. Ecol Appl 13:90–107

    Article  Google Scholar 

  • Cebrian J (1999) Patterns in the fate of production in plant communities. Am Nat 154:449–468. https://doi.org/10.1086/303244

    Article  PubMed  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cy 17:1–11. https://doi.org/10.1029/2002GB001917

    Article  CAS  Google Scholar 

  • Colombini I, Chelazzi L (2003) Influence of marine allochthonous input on sandy beach communities. Oceanogr Mar Biol 41:115–159. https://doi.org/10.1201/9780203180570.ch3

    Article  Google Scholar 

  • Davies CE, Moss D (2003) EUNIS habitat classification. European Topic Centre on Nature Protection and Bio-diversity, Paris. http://eunis.eea.europa.eu/habitats.jsp. Accessed 1st Oct 2019

  • de Bettignies T, Thomsen MS, Wernberg T (2012) Wounded kelps: Patterns and susceptibility to breakage. Aquat Biol 17:223–233. https://doi.org/10.3354/ab00471

    Article  Google Scholar 

  • de Bettignies T, Wernberg T, Lavery PS (2013a) Size, not morphology, determines hydrodynamic performance of a kelp during peak flow. Mar Biol 160:843–851. https://doi.org/10.1007/s00227-012-2138-8

    Article  Google Scholar 

  • de Bettignies T, Wernberg T, Lavery PS, Vanderklift MA, Mohring MB (2013b) Contrasting mechanisms of dislodgement and erosion contribute to production of kelp detritus. Limnol Oceanogr 58:1680–1688. https://doi.org/10.4319/lo.2013.58.5.1680

    Article  Google Scholar 

  • de Bettignies T, Wernberg T, Lavery PS, Vanderklift MA, Gunson JR, Symonds G, Collier N (2015) Phenological decoupling of mortality from wave forcing in kelp beds. Ecology 96:850–861

    Article  Google Scholar 

  • Donato DC, Kaufmann JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    Article  CAS  Google Scholar 

  • Duarte CM (2017) Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 14:301–310. https://doi.org/10.5194/bg-14-301-2017

    Article  CAS  Google Scholar 

  • Duggins D, Simenstad C, Estes J (1989) Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170–173

    Article  CAS  Google Scholar 

  • Ebeling AW, Laur DR, Rowley RJ (1985) Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar Biol 84:287–294

    Article  Google Scholar 

  • Filbee-Dexter K, Scheibling RE (2012) Hurricane-mediated defoliation of kelp beds and pulsed delivery of kelp detritus to offshore sedimentary habitats. Mar Ecol Prog Ser 455:51–64. https://doi.org/10.3354/meps09667

    Article  Google Scholar 

  • Filbee-Dexter K, Scheibling RE (2016) Spatial patterns and predictors of drift algal subsidy in deep subtidal environments. Estuaries Coasts 39:1724–1734. https://doi.org/10.1007/s12237-016-0101-5

    Article  Google Scholar 

  • Filbee-Dexter K, Wernberg T, Norderhaug KM, Ramirez-Llodra E, Pedersen MF (2018) Movement of pulsed resource subsidies from kelp forests to deep fjords. Oecologia 187:291–304. https://doi.org/10.1007/s00442-018-4121-7

    Article  PubMed  Google Scholar 

  • Filbee-Dexter K, Pedersen MF, Fredriksen S, Norderhaug KM, Rinde E, Kristiansen T, Albretsen J, Wernberg T (2019) Carbon export is facilitated by marine shredders transforming kelp detritus. Oecologia. https://doi.org/10.1007/s00442-019-04571

    Article  PubMed  Google Scholar 

  • Fonseca MS, Bell SS (1998) Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Mar Ecol Prog Ser 171:109–121

    Article  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509. https://doi.org/10.1038/NGEO1477

    Article  CAS  Google Scholar 

  • Fredriksen S (2003) Food web studies in a Norwegian kelp forest based on stable isotope (13C and 15N) analysis. Mar Ecol Prog Ser 260:71–81

    Article  CAS  Google Scholar 

  • Frisk NL (2017) The effect of temperature and oxygen availability on decay rate and changes in food quality of Laminaria hyperborea detritus. Master thesis, Department of Science and Environment, Roskilde University, Denmark

  • Gaillard B, Meziane T, Tremblay R, Archambault P, Blicher ME, Chauvaud L, Rysgaard S, Olivier F (2017) Food resources of the bivalve Astarte elliptica in a sub-Arctic fjord: a multi-biomarker approach. Mar Ecol Prog Ser 567:139–156. https://doi.org/10.3354/meps12036

    Article  CAS  Google Scholar 

  • Gerard VA (1976) Some aspects of material dynamics and energy flow in a kelp forest in Monterey Bay, California. PhD dissertation, University of California, Santa Cruz, USA

  • Graham MH, Harrold C, Lisin S, Light K, Watanabe JM, Foster MS (1997) Population dynamics of giant kelp Macrocystis pyrifera along a wave exposure gradient. Mar Ecol Prog Ser 148:269–279

    Article  Google Scholar 

  • Griffiths CL, Stenton-Dozey J, Koop K (1983) Kelp wrack and the flow of energy through a sandy beach ecosystem. In: McLachlan A, Erasmus T (eds) Sandy beaches as ecosystems. W. Junk Publishers, The Hague, pp 547–556

    Chapter  Google Scholar 

  • Gunnarsson K (1991) Populations de Laminaria hyperborea et Laminaria digitata (Phéophycées) dans la baie de Breidifjördur, Islande. Rit Fiskideildar. J Mar Res Inst Reykjavik 12:1–148

    Google Scholar 

  • Howard J, Sutton-Grier A, Herr D, Kleypas J, Landis E, Mcleod E, Pigeon E, Simpson S (2017) Clarifying the role of coastal and marine systems in climate mitigation. Front Ecol Environ 15:42–50. https://doi.org/10.1002/fee.1451

    Article  Google Scholar 

  • Ince R, Hyndes GA, Lavery PS, Vanderklift MA (2007) Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuar Coast Shelf Sci 74:77–86

    Article  Google Scholar 

  • Jupp BP, Drew EA (1974) Studies on the growth of Laminaria hyperborea (Gunn) Fosl. I. Biomass and productivity. J Exp Mar Biol Ecol 15:185–196

    Article  Google Scholar 

  • Keck A, Wassmann P (1996) Temporal and spatial patterns of sedimentation in the subarctic fjord Malangen, northern Norway. Sarsia 80:259–276

    Article  Google Scholar 

  • Krause-Jensen D, Duarte CM (2016) Substantial role of macroalgae in marine carbon sequestration. Nat Geosci 9:737–742. https://doi.org/10.1038/ngeo2790

    Article  CAS  Google Scholar 

  • Krause-Jensen D, Lavery P, Serrano O, Marbà N, Masque P, Duarte CM (2018) Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biol Lett 14:20180236. https://doi.org/10.1098/rsbl.2018.0236

    Article  PubMed  PubMed Central  Google Scholar 

  • Krumhansl KA, Scheibling RE (2011) Detrital production in Nova Scotian kelp beds: patterns and processes. Mar Ecol Prog Ser 421:67–82. https://doi.org/10.3354/meps08905

    Article  Google Scholar 

  • Krumhansl KA, Scheibling RE (2012) Production and fate of kelp detritus. Mar Ecol Prog Ser 467:281–302. https://doi.org/10.3354/meps09940

    Article  Google Scholar 

  • Krumhansl KA, Lee MJ, Scheibling RE (2011) Grazing damage and encrustation by an invasive bryozoan reduce the ability of kelps to withstand breakage by waves. J Exp Mar Biol Ecol 407:12–18

    Article  Google Scholar 

  • Leclerc J-C, Riera P, Leroux C, Lévêque L, Davoult D (2013) Temporal variation in organic matter supply in kelp forests: linking structure to trophic function. Mar Ecol Prog Ser 494:87–105

    Article  CAS  Google Scholar 

  • Lüning K (1969) Standing crop and leaf area index of the sublittoral Laminaria species near Helgoland. Mar Biol 3:282–286

    Article  Google Scholar 

  • Mamelona J, Pelletier É (2005) Green urchin as a significant source of fecal particulate organic matter within nearshore benthic ecosystems. J Exp Mar Biol Ecol 314:163–174. https://doi.org/10.1016/J.JEMBE.2004.08.026

    Article  Google Scholar 

  • Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981. https://doi.org/10.1126/science.182.4116.975

    Article  CAS  PubMed  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. https://doi.org/10.1890/110004

    Article  Google Scholar 

  • McMeans BC, Rooney N, Arts MT, Fisk AT (2013) Food web structure of a coastal Arctic marine ecosystem and implications for stability. Mar Ecol Prog Ser 482:17–28. https://doi.org/10.3354/meps10278

    Article  CAS  Google Scholar 

  • Miller RJ, Page HM (2012) Kelp as a trophic resource for marine suspension feeders: a review based on isotope-based evidence. Mar Biol 159:1391–1402

    Article  Google Scholar 

  • Mohring MB, Wernberg T, Kendrick GA, Rule MJ (2012) Reproductive synchrony in a habitat-forming kelp and its relationship with environmental conditions. Mar Biol 160:119–126. https://doi.org/10.1007/s00227-012-2068-5

    Article  Google Scholar 

  • Newell RC, Field JG, Griffiths CL (1982) Energy balance and significance of microorganisms in a kelp bed community. Mar Ecol Prog Ser 8:103–113

    Article  Google Scholar 

  • Newell RC, Lucas MI, Velirnirov B, Seiderer LJ (1980) Quantitative significance of dissolved organic losses following fragmentation of Kelp (Ecklonia maxima and Laminaria pallida). Mar Ecol Prog Ser 2:45–59

    Article  CAS  Google Scholar 

  • Norderhaug KM, Christie H (2011) Secondary production in a Laminaria hyperborea kelp forest and variation according to wave exposure. Est Coast Shelf Sci 95:135–144

    Article  Google Scholar 

  • Parke M (1948) Studies of British Laminariaceae. I. Growth in Laminaria saccharina (L.) Lamour. J Mar Biol Ass UK 27:651–709

    Article  Google Scholar 

  • Pedersen MF, Nejrup LB, Fredriksen S, Christie H, Norderhaug KM (2012) Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar Ecol Prog Ser 451:45–60

    Article  Google Scholar 

  • Pessarrodona A, Moore PJ, Sayer MDJ, Smale DA (2018) Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate. Glob Change Biol 24:4386–4398. https://doi.org/10.1111/gcb.14303

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Ann Rev Ecol Syst 28:289–316. https://doi.org/10.1146/annurev.ecolsys.28.1.289

    Article  Google Scholar 

  • Poore AG, Campbell AH, Coleman RA, Edgar GJ, Jormalainen V, Reynolds PL, Sotka EE, Stachowicz JJ, Taylor RB, Vanderklift MA, Duffy JE (2012) Global patterns in the impact of marine herbivores on benthic primary producers. Ecol Lett 15:912–922. https://doi.org/10.1111/j.1461-0248.2012.01804.x

    Article  PubMed  Google Scholar 

  • Raven JA (2017) The possible role of algae in restricting the increase in atmospheric CO2 and global temperature. Eur J Phycol 52:506–522. https://doi.org/10.1080/09670262.2017.1362593

    Article  CAS  Google Scholar 

  • Reed DC, Carlson CA, Halewood ER, Nelson JC, Harrer SL, Rassweiler A, Miller RJ (2015) Patterns and controls of reef-scale production of dissolved organic carbon by giant kelp Macrocystis pyrifera. Limnol Oceanogr 60:1996–2008

    Article  CAS  Google Scholar 

  • Sauchyn L, Scheibling R (2009) Degradation of sea urchin feces in a rocky subtidal ecosystem: implications for nutrient cycling and energy flow. Aquat Biol 6:99–108. https://doi.org/10.3354/ab00171

    Article  Google Scholar 

  • Seymour RJ, Tegner MJ, Dayton PK, Parnell PN (1989) Storm wave induced mortality of giant kelp, Macrocystis pyrifera, in Southern California. Estuar Coast Shelf Sci 28:277–292. https://doi.org/10.1016/0272-7714(89)90018-8

    Article  Google Scholar 

  • Sheppard CRC, Jupp BP, Sheppard A, Bellamy DJ (1978) Studies on the Growth of Laminaria hyperborea (Gunn.) Fosl. and Laminaria ochroleuca De La Pylaie on the French Channel Coast. Bot Mar 21:109–116. https://doi.org/10.1515/botm.1978.21.2.109

  • Sjötun K, Fredriksen S, Lein TE, Rueness J, Sivertsen K (1993) Population studies of Laminaria hyperborea from its northern range of distribution in Norway. Hydrobiologia 260(261):215–221

    Article  Google Scholar 

  • Sjötun K, Fredriksen S, Rueness J, Lein TE (1995) Ecological studies of the kelp Laminaria hyperborea (Gunnerus) Foslie in Norway. In: Skjoldal HR, Hopkins C, Erikstad KE, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier Science BV, Amsterdam, pp 525–536

    Google Scholar 

  • Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ (2013) Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol Evol 3:4016–4038

    Article  Google Scholar 

  • Smale DA, Moore PJ, Queirós AM, Higgs ND, Burrows MT (2018) Appreciating interconnectivity between habitats is key to blue carbon management. Front Ecol Environ 16:71–73. https://doi.org/10.1002/fee.1765

    Article  Google Scholar 

  • Steneck RS, Johnson CR (2013) Kelp Forests: Dynamic patterns, processes, and feedbacks. In: Bertness M, Silliman B, Stachowitz J (eds) Marine community ecology. Sinauer, Sunderland, pp 315–336

    Google Scholar 

  • Tala F, Edding M (2005) Growth and loss of distal tissue in blades of Lessonia nigrescens and Lessonia trabeculata (Laminariales). Aquat Bot 82:39–54

    Article  Google Scholar 

  • Vanderklift MA, Wernberg T (2008) Detached kelps from distant sources are a food subsidy for sea urchins. Oecologia 157:327–335. https://doi.org/10.1007/s00442-008-1061-7

    Article  PubMed  Google Scholar 

  • Vetter E, Dayton P (1999) Organic enrichment by macrophyte detritus, and abundance patterns of megafaunal populations in submarine canyons. Mar Ecol Prog Ser 186:137–148

    Article  Google Scholar 

  • Wernberg T, Filbee-Dexter K (2018) Grazers extend blue carbon transfer by slowing sinking speeds of kelp detritus. Sci Rep 8:17180. https://doi.org/10.1038/s41598-018-34721-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernberg T, Vanderklift MA, How J, Lavery PS (2006) Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia 147:692–701. https://doi.org/10.1007/s00442-005-0318-7

    Article  PubMed  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78–82. https://doi.org/10.1038/nclimate1627

    Article  Google Scholar 

  • Wernberg T, Krumhansl K, Filbee-Dexter K, Pedersen MF (2019) Status and trends for the worlds kelp forests. In: Sheppard C (ed) World Seas: an environmental evaluation, vol III. Ecological issues and environmental impacts. Elsevier, Amsterdam, pp 57–78

    Chapter  Google Scholar 

  • Zar J (1999) Biostatistical analysis. Prentice-Hall Inc, Upper Saddle River, p 929

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Norwegian Research Council through the KELPEX project (NRC Grant No. 255085) and TW’s participation was further supported by the Australian Research Council (DP160100114). We would like to thank Sabine Popp, Eva Ramirez-Llodra, Amanda Poste, and Hjalte Hjarlgaard Hansen for valuable help with some of the field works at Sommarøy and two anonymous reviewers for valuable comments to an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MFP, KN, SF, and TW conceived the study with help from KFD. All authors developed the experimental design and conducted the fieldwork. MFP analyzed the data and led the writing of the manuscript, with assistance from KFD, TW, KN, NLF, and SF. CWF contributed to data presentation. All authors discussed the results.

Corresponding author

Correspondence to Morten Foldager Pedersen.

Additional information

Communicated by James Fourqurean.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, M.F., Filbee-Dexter, K., Norderhaug, K.M. et al. Detrital carbon production and export in high latitude kelp forests. Oecologia 192, 227–239 (2020). https://doi.org/10.1007/s00442-019-04573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-019-04573-z

Keywords

Navigation