Dynamic rodent behavioral response to predation risk: implications for disease ecology

Abstract

Prey modify their behavior in response to variation in predation risk, and such modifications can affect trophic processes such as disease transmission. However, variation in predation risk is complex, arising from direct risk from the predator itself and indirect risk due to the environment. Moreover, direct risk typically stems from multiple predators and varies over timescales (e.g., a predator nearby vs. its seasonal activities). We implemented a field-based experiment to disentangle these sources of risk and relate them to antipredator behavior in rodents. We modeled rodent occurrence and activity as a function of short- and long-term risk from a primary predator, red foxes (Vulpes vulpes), long-term risk from a second predator, coyotes (Canis latrans), and environmental variables. We found that long-term red fox activity strongly reduced rodent occurrence and that cues of nearby red fox presence decreased rodent activity by > 50%. In addition, this activity reduction was dynamic in that varied according to the background level of long-term red fox activity. Importantly, rodents did not respond to environmental variables (moonlight, temperature, and habitat) or long-term coyote activity. These results bear upon recent work that suggests predators can alter tick-borne disease dynamics via induced antipredator behavior of rodents, which are hosts for pathogens and ticks. Specifically, our study corroborates the hypothesis that red foxes act as important proximal agents in regulating tick-borne diseases by reducing rodent activity. More generally, this study highlights the need to consider the dynamic nature of prey antipredator response across landscapes with variable long-term predation risk.

This is a preview of subscription content, log in to check access.

Fig. 1

Basemap source: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Fig. 2
Fig. 3
Fig. 4

References

  1. Apfelbach R, Blanchard CD, Blanchard RJ et al (2005) The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev 29:1123–1144. https://doi.org/10.1016/j.neubiorev.2005.05.005

    Article  PubMed  Google Scholar 

  2. Barbosa P, Castellanos I (eds) (2005) Ecology of predator-prey interactions. Oxford University Press, New York

    Google Scholar 

  3. Bedoya-Pérez MA, Smith KL, Kevin RC et al (2019) Parameters that affect fear responses in rodents and how to use them for management. Front Ecol Evol 7:136. https://doi.org/10.3389/fevo.2019.00136

    Article  Google Scholar 

  4. Bjørnstad ON (2008) The ncf package: spatial nonparametric covariance functions

  5. Boyer N, Réale D, Marmet J et al (2010) Personality, space use and tick load in an introd population of Siberian chipmunks Tamias sibiric. J Anim Ecol 79:538–547

    Article  Google Scholar 

  6. Brinkerhoff RJ, Haddad NM, Orrock JL (2005) Corridors and olfactory predator cues affect small mammal behavior. J Mammal 86:662–669. https://doi.org/10.1644/1545-1542(2005)086%5b0662:caopca%5d2.0.co;2

    Article  Google Scholar 

  7. Brisson D, Dykhuizen DE, Ostfeld RS (2008) Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic. Proc R Soc B Biol Sci 275:227–235. https://doi.org/10.1098/rspb.2007.1208

    Article  Google Scholar 

  8. Brunner JL, Ostfeld RS (2008) Multiple causes of variable tick burdens on small-mammal hosts. Ecology 89:2259–2272

    Article  Google Scholar 

  9. Bunikis J, Tsao J, Luke CJ et al (2004) Borrelia burgdorferi infection in a natural population of Peromyscus Leucopus mice: a longitudinal study in an area where Lyme borreliosis is highly endemic. J Infect Dis 189:1515–1523. https://doi.org/10.1086/382594

    CAS  Article  PubMed  Google Scholar 

  10. Burkholder DA, Heithaus MR, Fourqurean JW et al (2013) Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? J Anim Ecol 82:1192–1202. https://doi.org/10.1111/1365-2656.12097

    Article  PubMed  Google Scholar 

  11. Calder CJ, Gorman ML (1991) The effects of red fox Vulpes vulpes faecal odours on the feeding behaviour of Orkney voles Microtus arvalis. J Zool 224:599–606. https://doi.org/10.1111/j.1469-7998.1991.tb03788.x

    Article  Google Scholar 

  12. Cepek JD (2004) Diet composition of coyotes in the Cuyahoga Valley National Park, Ohio. Ohio J Sci 3:60–64. https://doi.org/10.1021/ma9905167

    CAS  Article  Google Scholar 

  13. Christianson D, Creel S (2008) Risk effects in elk: sex-specific responses in grazing and browsing due to predation risk from wolves. Behav Ecol 19:1258–1266. https://doi.org/10.1093/beheco/arn079

    Article  Google Scholar 

  14. Craine NG, Randolph SE, Nuttall PA (1995) Seasonal variation in the role of grey squirrels as hosts of Ixodes ricinus, the tick vector of the Lyme disease spirochaete, in a British woodland. Folia Parasitol (Praha) 42:73–80

    CAS  Google Scholar 

  15. Creel S (2011) Toward a predictive theory of risk effects: hypotheses for prey attributes and compensatory mortality. Ecology 92:2190–2195. https://doi.org/10.1890/11-0327.1

    Article  PubMed  Google Scholar 

  16. Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23:194–201. https://doi.org/10.1016/j.tree.2007.12.004

    Article  PubMed  Google Scholar 

  17. Creel S, Winnie JA, Christianson D, Liley S (2008) Time and space in general models of antipredator response: tests with wolves and elk. Anim Behav 76:1139–1146. https://doi.org/10.1016/j.anbehav.2008.07.006

    Article  Google Scholar 

  18. Devevey G, Brisson D (2012) The effect of spatial heterogenity on the aggregation of ticks on white-footed mice. Parasitology 139:915–925. https://doi.org/10.1017/S003118201200008X

    CAS  Article  PubMed  Google Scholar 

  19. Dickman CR, Doncaster CP (1984) Responses of small mammals to red fox (Vulpes vulpes) odour. J Zool 204:521–531

    Article  Google Scholar 

  20. Elbroch LM (2003) Mammal tracks and sign: A guide to North American species. Stackpole Books, Mechanicsburg

    Google Scholar 

  21. Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet Earth. Science 333:301–306. https://doi.org/10.1126/science.1205106

    CAS  Article  PubMed  Google Scholar 

  22. Ferrari MCO, Sih A, Chivers DP (2009) The paradox of risk allocation: a review and prospectus. Anim Behav 78:579–585. https://doi.org/10.1016/j.anbehav.2009.05.034

    Article  Google Scholar 

  23. Gehrt SD, Riley S, Cypher BL (2010) Urban carnivores: ecology, conflict, and conservation. Johns Hopkins University Press, Baltimore

    Google Scholar 

  24. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York

    Google Scholar 

  25. Goad EH, Pejchar L, Reed SE, Knight RL (2014) Habitat use by mammals varies along an exurban development gradient in northern Colorado. Biol Conserv 176:172–182. https://doi.org/10.1016/j.biocon.2014.05.016

    Article  Google Scholar 

  26. Gosselink TE, Van Deelen TR, Warner RE, Joselyn MG (2003) Temporal habitat partitioning and spatial use of coyotes and red foxes in east-central Illinois. J Wildl Manage 67:90–103. https://doi.org/10.2307/3803065

    Article  Google Scholar 

  27. Halsey SJ, Miller JR (2018) A spatial agent-based model of the disease vector Ixodes scapularis to explore host-tick associations. Ecol Modell 387:96–106. https://doi.org/10.1016/j.ecolmodel.2018.09.005

    Article  Google Scholar 

  28. Han BA, Schmidt JP, Bowden SE, Drake JM (2015) Rodent reservoirs of future zoonotic diseases. Proc Natl Acad Sci 112:7039–7044. https://doi.org/10.1073/pnas.1501598112

    CAS  Article  PubMed  Google Scholar 

  29. Harrison DJ, Bissonette JA, Sherburne JA (1989) Spatial relationships between coyotes and red foxes in Eastern Maine. J Wildl Manage 53:181–185

    Article  Google Scholar 

  30. Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210. https://doi.org/10.1016/j.tree.2008.01.003

    Article  PubMed  Google Scholar 

  31. Hofmeester TR, Jansen PA, Wijnen HJ et al (2017) Cascading effects of predator activity on tick-borne disease risk. Proc R Soc B Biol Sci 284:20170453. https://doi.org/10.1098/rspb.2017.0453

    Article  Google Scholar 

  32. Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91:293–320. https://doi.org/10.4039/Ent91293-5

    Article  Google Scholar 

  33. Jacob J, Brown JS (2000) Microhabitat use, giving-up densities and temporal activity as short- and long-term anti-predator behaviors in common voles. Oikos 91:131–138. https://doi.org/10.1034/j.1600-0706.2000.910112.x

    Article  Google Scholar 

  34. Jones CG, Lindquist ES (2012) Utilization of woody debris by Peromyscus leucopus in a fragmented urban forest. Southeast Nat 11:689–698. https://doi.org/10.1656/058.011.0408

    Article  Google Scholar 

  35. Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–993. https://doi.org/10.1038/nature06536.Global

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Kavaliers M (1990) Responsiveness of deer mice to a predator, the short-tailed weasel: population differences and neuromodulatory mechanisms. Physiol Zool 63:388–407

    Article  Google Scholar 

  37. Kéry M, Royle JA (2015) Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness in R and BUGS/Volume 1, Prelude and static models. Elsevier, Amsterdam

    Google Scholar 

  38. Kilpatrick AM, Dobson ADM, Levi T et al (2017) Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos Trans R Soc B Biol Sci 372:20160117. https://doi.org/10.1098/rstb.2016.0117

    Article  Google Scholar 

  39. Lesmeister DB, Nielsen CK, Schauber EM, Hellgren EC (2015) Spatial and temporal structure of a mesocarnivore guild in Midwestern North America. Wildl Monogr 191:1–61. https://doi.org/10.1002/wmon.1015

    Article  Google Scholar 

  40. Levi T, Kilpatrick AM, Mangel M, Wilmers CC (2012) Deer, predators, and the emergence of Lyme disease. Proc Natl Acad Sci 109:10942–10947. https://doi.org/10.1073/pnas.1204536109

    Article  PubMed  Google Scholar 

  41. Levine JF, Wilson ML, Spielman A (1985) Mice as reservoirs of the Lyme disease spirochete. Am J Trop Med Hyg 34:355–360. https://doi.org/10.4269/ajtmh.1985.34.355

    CAS  Article  PubMed  Google Scholar 

  42. Lima SL, Bednekoff PA (1999) Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am Nat 153:649–659. https://doi.org/10.1086/303202

    Article  PubMed  Google Scholar 

  43. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. https://doi.org/10.1139/z90-092

    Article  Google Scholar 

  44. LoGiudice K, Ostfeld RS, Schmidt KA, Kessing F (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci 100:567–571. https://doi.org/10.5586/aa.2009.011

    CAS  Article  PubMed  Google Scholar 

  45. Macdonald DW (1979) Some observations and field experiments on the urine marking behaviour of the red fox, Vulpes vulpes L. Z Tierpsychol 51:1–22. https://doi.org/10.1111/j.1439-0310.1979.tb00667.x

    Article  Google Scholar 

  46. MacKenzie DI, Nichols JD, Lachman GB et al (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  47. Marcum DJ (2017) Mammal assemblages of the Cuyahoga Valley National Park: an update after 30 years. Kent State University

  48. Mather TN, Wilson ML, Moore SI et al (1989) Comparing the relative potential of rodents as reservoirs of the Lyme disease spirochete (Borrelia burgdorferi). Am J Epidemiol 130:143–150. https://doi.org/10.1093/oxfordjournals.aje.a115306

    CAS  Article  PubMed  Google Scholar 

  49. Mills JN, Childs JE (1998) Ecologic studies of rodent reservoirs: their relevance for human health. Emerg Infect Dis 4:529–537. https://doi.org/10.3201/eid0404.980403

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Mohr CO, Stumpf WA (1964) Relation of tick and chigger infestations to home areas of California meadow mice. J Med Entomol 1:73–77. https://doi.org/10.1093/jmedent/1.1.73

    CAS  Article  PubMed  Google Scholar 

  51. Moll RJ, Kilshaw K, Montgomery RA et al (2016) Clarifying habitat niche width using broad-scale, hierarchical occupancy models: a case study with a recovering mesocarnivore. J Zool 300:177–185. https://doi.org/10.1111/jzo.12369

    Article  Google Scholar 

  52. Moll RJ, Redilla KM, Mudumba T et al (2017) The many faces of fear: a synthesis of methodological variation in characterizing predation risk. J Anim Ecol 86:749–765

    Article  Google Scholar 

  53. Moll RJ, Cepek JD, Lorch PD et al (2018) Humans and urban development mediate the sympatry of competing carnivores. Urban Ecosyst 21:765–778

    Article  Google Scholar 

  54. Moore SM, Borer ET, Hosseini PR (2010) Predators indirectly control vector-borne disease: linking predator–prey and host–pathogen models. J R Soc Interface 7:161–176. https://doi.org/10.1098/rsif.2009.0131

    Article  PubMed  Google Scholar 

  55. Mowry S, Keesing F, Fischhoff IR, Ostfeld RS (2019) Predicting larval tick burden on white-footed mice with an artificial neural network. Ecol Inform 52:150–158. https://doi.org/10.1016/j.ecoinf.2019.04.002

    Article  Google Scholar 

  56. Nelson CA, Saha S, Kugeler KJ et al (2015) Incidence of clinician-diagnosed lyme disease, United States, 2005–2010. Emerg Infect Dis 21:1625–1631. https://doi.org/10.3201/eid2109.150417

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Nolte DL, Mason JR, Epple G et al (1994) Why are predator urines aversive to prey? J Chem Ecol 20:1505–1516

    CAS  Article  Google Scholar 

  58. Northrup JM, Gerber BD (2018) A comment on priors for Bayesian occupancy models. PLoS One 13:e0192819

    Article  Google Scholar 

  59. Ohio Department of Health (2018) Lyme disease. https://odh.ohio.gov/wps/portal/gov/odh/know-our-programs/zoonotic-disease-program/resources/lyme-disease

  60. Orrock JL, Danielson BJ (2009) Temperature and cloud cover, but not predator urine, affect winter foraging of mice. Ethology 115:641–648. https://doi.org/10.1111/j.1439-0310.2009.01654.x

    Article  Google Scholar 

  61. Orrock JL, Danielson BJ, Brinkerhoff RJ (2004) Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behav Ecol 15:433–437. https://doi.org/10.1093/beheco/arh031

    Article  Google Scholar 

  62. Orrock JL, Grabowski JH, Pantel JH et al (2008) Consumptive and nonconsumptive effects of predators on metacommunities of competing prey. Ecology 89:2426–2435. https://doi.org/10.1890/07-1024.1

    Article  PubMed  Google Scholar 

  63. Ostfeld RS (2011) Lyme disease: the ecology of a complex system. Oxford University Press, New York

    Google Scholar 

  64. Ostfeld RS, Holt RD (2004) Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front Ecol Environ 2:13–20. https://doi.org/10.1890/1540-9295(2004)002%5b0013:apgfyh%5d2.0.co;2

    Article  Google Scholar 

  65. Ostfeld RS, Jones CG, Wolff JO (1996) Of mice and mast: ecological connections in eastern deciduous forests. Bioscience 46:323–330. https://doi.org/10.2307/1312946

    Article  Google Scholar 

  66. Ostfeld RS, Levi T, Keesing F et al (2018) Tick-borne disease risk in a forest food web. Ecology 99:1562–1573. https://doi.org/10.1002/ecy.2386

    Article  PubMed  Google Scholar 

  67. Persons WE, Eason P (2017) Human activity and habitat type affect perceived predation risk in urban white-footed mice (Peromyscus leucopus). Ethology 123:348–356. https://doi.org/10.1111/eth.12604

    Article  Google Scholar 

  68. Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing. pp. 124:1–8

  69. Prugh LR, Golden CD (2014) Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J Anim Ecol 83:504–514. https://doi.org/10.1111/1365-2656.12148

    Article  PubMed  Google Scholar 

  70. Randolph SE (1975) Patterns of distribution of the tick Ixodes trianguliceps Birula on its hosts. J Anim Ecol 44:451–474

    Article  Google Scholar 

  71. Randolph SE (1979) Population regulation in ticks: the role of acquired resistance in natural and unnatural hosts. Parasitology 79:141–156. https://doi.org/10.1017/S0031182000052033

    CAS  Article  PubMed  Google Scholar 

  72. Randolph SE, Storey K (1999) Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J Med Entomol 36:741–748. https://doi.org/10.1093/jmedent/36.6.741

    CAS  Article  PubMed  Google Scholar 

  73. Randolph SE, Miklisová D, Lysy J et al (1999) Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118:177–186. https://doi.org/10.1017/s0031182098003643

    Article  PubMed  Google Scholar 

  74. Ripple WJ, Estes JA, Beschta RL et al (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484. https://doi.org/10.1126/science.1241484

    CAS  Article  PubMed  Google Scholar 

  75. RStudio Team (2015) RStudio: Integrated Development for R

  76. Schmitz OJ (2008) Effects of predator hunting mode on grassland ecosystem function. Science 319:952–954. https://doi.org/10.1126/science.1152355

    CAS  Article  PubMed  Google Scholar 

  77. Schmitz OJ, Beckerman AP, O’Brien KM (1997) Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78:1388–1399

    Article  Google Scholar 

  78. Schwartz AM, Hinckley AF, Mead PS et al (2017) Surveillance for Lyme Disease—United States, 2008–2015. MMWR Surveill Summ 66:1–12. https://doi.org/10.15585/mmwr.ss6622a1

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sollmann R, Malzoni M, Gardner B et al (2011) Improving density estimates for elusive carnivores: accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biol Conserv 144:1017–1024. https://doi.org/10.1016/j.biocon.2010.12.011

    Article  Google Scholar 

  80. Stevens DL, Olsen AR (2003) Variance estimation for spatially balanced samples of environmental resources. Environmetrics 14:593–610. https://doi.org/10.1002/env.606

    Article  Google Scholar 

  81. Su YS, Yajima M (2012) R2jags: a package for running jags from R

  82. Sword GA, Lorch PD, Gwynne DT (2005) Migratory bands give crickets protection. Nature 433:703. https://doi.org/10.1038/433703a

    CAS  Article  PubMed  Google Scholar 

  83. Taylor LH, Latham SM, Woolhouse MEJ (2001) Risk factors for human disease emergence. Philos Trans R Soc B Biol Sci 356:983–989. https://doi.org/10.1098/rstb.2001.0888

    CAS  Article  Google Scholar 

  84. Tollrian R, Harvell CD (1999) The ecology and evolution of inducible defenses. Princeton University Press, Princeton

    Google Scholar 

  85. Tsao JI, Wootton JT, Bunikis J et al (2004) An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proc Natl Acad Sci 101:18159–18164

    CAS  Article  Google Scholar 

  86. Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100. https://doi.org/10.1890/0012-9658(2003)084%5b1083:arotii%5d2.0.co;2

    Article  Google Scholar 

  87. Werner EE, Gilliam JF, Hall DJ, Mittelbach GG (1983) An experimental test of the effects of predation risk on habitat use in fish. Ecology 64:1540–1548. https://doi.org/10.2307/1937508

    Article  Google Scholar 

  88. Wiewel AS, Clark WR, Sovada MA (2007) Assessing small mammal abundance with track-tube indices and mark–recapture population estimates. J Mammal 88:250–260. https://doi.org/10.1644/06-MAMM-A-098R1.1

    Article  Google Scholar 

  89. Wolff JO (1985) The effects of density, food, and interspecific interference on home range size in Peromyscus leucopus and Peromyscus maniculatus. Can J Zool 63:2657–2662. https://doi.org/10.1139/z85-397

    Article  Google Scholar 

  90. Woolhouse MEJ, Dye C, Etard JF et al (1997) Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA 94:338–342

    CAS  Article  Google Scholar 

Download references

Acknowledgements

RJM was supported by an NSF Graduate Research Fellowship and University Distinguished and Joseph Laurence Maison Fellowships provided by Michigan State University. JTE was supported by the Hymen and Miriam Stein Scholarship provided by Michigan State University. We thank J. Beck, M. Smith, and G. Burton for field assistance, G. Roloff and S. Peacor for study design input, and T. Hofmeester and an anonymous reviewer for constructive criticism that improved the article.

Author information

Affiliations

Authors

Contributions

RJM conceived and designed the experiments with input from co-authors, especially JTE. RJM and JTE collected the data. RJM analyzed the data. RJM and JTE wrote the manuscript; other authors provided editorial advice and comments.

Corresponding author

Correspondence to Remington J. Moll.

Additional information

Communicated by Herwig Leirs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 150 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moll, R.J., Eaton, J.T., Cepek, J.D. et al. Dynamic rodent behavioral response to predation risk: implications for disease ecology. Oecologia 192, 67–78 (2020). https://doi.org/10.1007/s00442-019-04565-z

Download citation

Keywords

  • Antipredator behavior
  • Lyme disease
  • Predation risk
  • Risk allocation
  • Trophic interactions