Environmental gradients influence differences in leaf functional traits between native and non-native plants

Abstract

Determining the characteristics of non-native plants that can successfully establish and spread is central to pressing questions in invasion ecology. Evidence suggests that some non-native species establish and spread in new environments because they possess characteristics (functional traits) that allow them to either successfully compete with native residents or fill previously unfilled niches. However, the relative importance of out-competing native species vs. filling empty niche space as potential mechanisms of invasion may depend on environmental characteristics. Here, we measured plant functional traits, proxies indicative of competitive and establishment strategies, to determine if these traits vary among native and invasive species and if their prevalence is dependent on environmental conditions. Using a natural environmental gradient in Hawai’i Volcanoes National Park, we evaluated how functional traits differ between native and non-native plant communities and if these differences change along an environmental gradient from hot, dry to cool, wet conditions. Functional trait differences suggested that both competition and open niche space may be important for invasion. Non-native communities tended to have traits associated with faster growth strategies such as higher specific leaf area and lower leaf thickness. However, native and non-native community traits became more dissimilar along the gradient, suggesting that non-native species may be occupying previously unfilled niche space at the hot, dry end of the gradient. We also found that most of the variation in functional trait values amongst plots was due to species turnover rather than intraspecific variation. These results highlight the role of environmental context when considering invasion mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ainsworth A, Berkowitz P, Jacobi J, Loh R, Kozar K (2011) Focal terrestrial plant communities monitoring protocol: Pacific Island network. Createspace Independent, Fort Collins

    Google Scholar 

  2. Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci 108:656–661. https://doi.org/10.1073/pnas.1013136108

    Article  PubMed  Google Scholar 

  3. Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141:612–619. https://doi.org/10.1007/s00442-004-1679-z

    Article  PubMed  Google Scholar 

  4. Asner GP, Hughes RF, Vitousek PM, Knapp DE, Kennedy-Bowdoin T, Boardman J, Martin RE, Eastwood M, Green RO (2008) Invasive plants transform the three-dimensional structure of rain forests. Proc Natl Acad Sci 105:4519–4523. https://doi.org/10.1073/pnas.0710811105

    Article  PubMed  Google Scholar 

  5. Baldwin PH, Fagerlund GO (1943) The effect of cattle grazing on koa reproduction in Hawai’i National Park. Ecology 24:118–122

    Article  Google Scholar 

  6. Bernard-Verdier M, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E (2012) Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J Ecol 100:1422–1433. https://doi.org/10.1111/1365-2745.12003

    Article  Google Scholar 

  7. Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 80(313):58–62

    Article  CAS  Google Scholar 

  8. Buckley YM, Anderson S, Catterall CP, Corlett RT, Engel T, Gosper CR, Nathan R, Richardson DM, Setter M, Spiegel O, Vivian-Smith G, Voigt FA, Weir JES, Westcott DA (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43:848–857. https://doi.org/10.1111/j.1365-2664.2006.01210.x

    Article  Google Scholar 

  9. Carboni M, Munkemuller T, Lavergne S, Choler P, Borgy B, Violle C, Essl F, Roquet C, Munoz F, Consortium D, Thuiller W (2016) What it takes to invade grassland ecosystems: traits, introduction history and filtering processes. Eol Lett 19:219–229. https://doi.org/10.1111/ele.12556

    Article  Google Scholar 

  10. Conti L, Block S, Parepa M, Münkemüller T, Thuiller W, Acosta ATR, van Kleunen M, Dullinger S, Essl F, Dullinger I, Moser D, Klonner G, Bossdorf O, Carboni M (2017) Functional trait differences and trait plasticity mediate biotic resistance to potential plant invaders. J Ecol 12:3218–3221. https://doi.org/10.1111/1365-2745.12928

    Article  Google Scholar 

  11. Cordell S, Goldstein G, Mueller-Dombois D, Webb D, Vitousek PM (1998) Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113:188–196. https://doi.org/10.1007/s004420050367

    CAS  Article  PubMed  Google Scholar 

  12. Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126. https://doi.org/10.1890/07-1134.1

    Article  Google Scholar 

  13. D’Antonio CM, Ostertag R, Cordell S, Yelenik S (2017) Interactions among invasive plants: lessons from Hawai‘i. Annu Rev Ecol Evol Syst 48:521–541. https://doi.org/10.1146/annurev-ecolsys-110316-022620

    Article  Google Scholar 

  14. Daehler CC, Denslow JS, Ansari S, Kuo H-C (2004) A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific islands. Conserv Biol 18:360–368. https://doi.org/10.1111/j.1523-1739.2004.00066.x

    Article  Google Scholar 

  15. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? a meta-analysis. Ecol Lett 14:419–431. https://doi.org/10.1111/j.1461-0248.2011.01596.x

    Article  PubMed  Google Scholar 

  16. Denslow JS (2003) Weeds in paradise: thoughts on the invasibility of tropical islands. Ann Missouri Bot Gard 90:119–127

    Article  Google Scholar 

  17. Díaz S, Kattge J, Cornelissen JHC, Wright IJ et al (2016) The global spectrum of plant form and function. Nature 529:1–17. https://doi.org/10.1038/nature16489

    CAS  Article  Google Scholar 

  18. Divíšek J, Chytrý M, Beckage B, Gotelli NJ, Lososová Z, Pyšek P, Richardson DM, Molofsky J (2018) Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat Commun 9:1–10. https://doi.org/10.1038/s41467-018-06995-4

    CAS  Article  Google Scholar 

  19. Drenovsky RE, Grewell BJ, D’Antonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL (2012a) A functional trait perspective on plant invasion. Ann Bot 110:141–153. https://doi.org/10.1093/aob/mcs100

    Article  PubMed  PubMed Central  Google Scholar 

  20. Drenovsky RE, Khasanova A, James JJ (2012b) Trait convergence and plasticity among native and invasive species in resource-poor environments. Am J Bot 99:629–639. https://doi.org/10.3732/ajb.1100417

    Article  PubMed  Google Scholar 

  21. Dwyer JM, Hobbs RJ, Mayfield MM (2014) Specific leaf area responses to environmental gradients through space and time. Ecology 95:399–410. https://doi.org/10.1890/13-0412.1

    Article  PubMed  Google Scholar 

  22. Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24:411–439

    Article  Google Scholar 

  23. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80. https://doi.org/10.1146/annurev-ecolsys-102209-144650

    Article  Google Scholar 

  24. Enquist BJ, Norberg J, Bonser SP, Violle C, Webb CT, Henderson A, Sloat LL, Savage VM (2015) Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  25. Enquist BJ, Bentley LP, Shenkin A, Maitner B, Savage V, Michaletz S, Blonder B, Buzzard V, Espinoza TEB, Farfan-Rios W, Doughty CE, Goldsmith GR, Martin RE, Salinas N, Silman M, Díaz S, Asner GP, Malhi Y (2017) Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. Glob Ecol Biogeogr 26:1357–1373. https://doi.org/10.1111/geb.12645

    Article  Google Scholar 

  26. Funk JL (2008) Differences in plasticity between invasive and native plants from a low resource environment. J Ecol 96:1162–1173. https://doi.org/10.1111/j.1365-2745.2008.01435.x

    Article  Google Scholar 

  27. Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081. https://doi.org/10.1038/nature05719

    CAS  Article  PubMed  Google Scholar 

  28. Funk JL, Standish RJ, Stock WD, Valladares F (2016) Plant functional traits of dominant native and invasive species in Mediterranean-climate ecosystems. Ecology 97:75–83. https://doi.org/10.1890/15-0974.1

    Article  PubMed  Google Scholar 

  29. Gallien L, Carboni M (2017) The community ecology of invasive species: where are we and what’s next? Ecography (Cop) 40:335–352. https://doi.org/10.1111/ecog.02446

    Article  Google Scholar 

  30. Giambelluca T, Shuai X, Barnes M, Alliss R, Longman R, Miura T, Chen Q, Frazier A, Mudd R, Cuo L, Businger A (2014) Evapostranspiration of Hawai’i. Honolulu, HI

    Google Scholar 

  31. Gioria M, Pyšek P (2017) Early bird catches the worm: germination as a critical step in plant invasion. Biol Invasions 19:1055–1080. https://doi.org/10.1007/s10530-016-1349-1

    Article  Google Scholar 

  32. Godoy O, Valladares F, Castro-Díez P (2011) Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Funct Ecol 25:1248–1259. https://doi.org/10.1111/j.1365-2435.2011.01886.x

    Article  Google Scholar 

  33. Gross N, Börger L, Duncan RP, Hulme PE (2013) Functional differences between alien and native species: do biotic interactions determine the functional structure of highly invaded grasslands? Funct Ecol 27:1262–1272. https://doi.org/10.1111/1365-2435.12120

    Article  Google Scholar 

  34. Hooper DU, Dukes JS (2010) Functional composition controls invasion success in a California serpentine grassland. J Ecol 98:764–777. https://doi.org/10.1111/j.1365-2745.2010.01673.x

    Article  Google Scholar 

  35. Huenneke LF, Vitousek PM (1990) Seedling and clonal recruitment of the invasive tree Psidium cattleianum: implications for management of native Hawaiian forests. Biol Conserv 53:199–211. https://doi.org/10.1016/0006-3207(90)90086-5

    Article  Google Scholar 

  36. Hulme PE, Bernard-Verdier M (2017) Comparing traits of native and alien plants: can we do better? Funct Ecol 32:117–125. https://doi.org/10.1111/1365-2435.12982

    Article  Google Scholar 

  37. Hulme PE, Bernard-Verdier M (2018) Evaluating differences in the shape of native and alien plant trait distributions will bring new insights into invasions of plant communities. J Veg Sci 29:348–355. https://doi.org/10.1111/jvs.12625

    Article  Google Scholar 

  38. Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140. https://doi.org/10.1111/j.1365-2745.2010.01687.x

    Article  Google Scholar 

  39. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164. https://doi.org/10.2307/3235676

    Article  Google Scholar 

  40. Kennedy TA, Naeem S, Howe KM, Knops JM, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:1997–1999

    Google Scholar 

  41. Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits a distance-based framework for measuring from multiple traits functional diversity. Ecology 91:299–305. https://doi.org/10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  42. Leishman MR, Haslehurst T, Ares A, Baruch Z (2007) Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol 176:635–643. https://doi.org/10.1111/j.1469-8137.2007.02189.x

    CAS  Article  PubMed  Google Scholar 

  43. Lepš J, de Bello F, Šmilauer P, Doležal J (2011) Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography (Cop) 34:856–863. https://doi.org/10.1111/j.1600-0587.2010.06904.x

    Article  Google Scholar 

  44. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  45. MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615. https://doi.org/10.1111/j.1365-2745.2009.01514.x

    Article  Google Scholar 

  46. Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198

    CAS  Article  PubMed  Google Scholar 

  47. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. https://doi.org/10.1016/j.tree.2006.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ordonez A, Wright IJ, Olff H (2010) Functional differences between native and alien species: a global-scale comparison. Funct Ecol 24:1353–1361. https://doi.org/10.1111/j.1365-2435.2010.01739.x

    Article  Google Scholar 

  49. Ostertag R, Inman-Narahari F, Cordell S, Giardina CP, Sack L (2014) Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests. PLoS One. https://doi.org/10.1371/journal.pone.0103268

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. https://doi.org/10.1071/BT12225

    Article  Google Scholar 

  51. Price JN, Pärtel M (2013) Can limiting similarity increase invasion resistance? a meta-analysis of experimental studies. Oikos 122:649–656. https://doi.org/10.1111/j.1600-0706.2012.00121.x

    Article  Google Scholar 

  52. Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Chang Biol 18:1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x

    Article  PubMed Central  PubMed  Google Scholar 

  53. Raich JW, Russell A, Vitousek PM (1997) Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai’i. Ecology 78:707–721

    Google Scholar 

  54. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  55. Reich PB (2014) The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J Ecol 102:275–301. https://doi.org/10.1111/1365-2745.12211

    Article  Google Scholar 

  56. Reid W (1998) Biodiversity hotspots. Trends Ecol Evol 13:275–280. https://doi.org/10.1016/S0169-5347(98)01363-9

    CAS  Article  PubMed  Google Scholar 

  57. Ricciardi A, Blackburn TM, Carlton JT, Dick JTA, Hulme PE, Iacarella JC, Jeschke JM, Liebhold AM, Lockwood JL, MacIsaac HJ, Pyšek P, Richardson DM, Ruiz GM, Simberloff D, Sutherland WJ, Wardle DA, Aldridge DC (2017) Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol Evol 32:464–474. https://doi.org/10.1016/j.tree.2017.03.007

    Article  PubMed  Google Scholar 

  58. Richardson DM, Pysek P, Rejmanek M, Barbour MG, Dane F, Diversity S, Mar N, Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  59. Royal Botanic Gardens Kew (2019) Seed information database (SID). Version 7.1. Available from: http://data.kew.org/sid/

  60. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Scowcroft PG (1997) Mass and nutrient dynamics of decaying litter from Passiflora mollissima and selected native species in a Hawaiian montane rain forest. J Trop Ecol 13:407–426. https://doi.org/10.1017/S0266467400010592

    Article  Google Scholar 

  62. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  63. Sherrod DR, Sinton JM, Watkins SE, Brunt KM (2007) Geologic map of the State of Hawai`i: U.S. Geological Survey Open-File Report 2007–1089. http://pubs.usgs.gov/of/2007/1089/

  64. Stachowicz JJ, Tilman D (2005) Species invasions and the relationships between species diversity, community saturation, and ecosystem functioning. In: Sax DF, Stachowicz JJ, Gaines DS (eds) Species invasions: insights into ecology, evolution, and biogeography, 1st edn. Sinauer Associates, Sunderland, Massachusetts, pp 41–64

  65. Subramaniam B (2014) Ghost stories for Darwin: the science of variation and the politics of diversity. University of Illinois Press, Chicago

    Google Scholar 

  66. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273. https://doi.org/10.1111/j.1469-8137.2007.02207.x

    Article  PubMed  Google Scholar 

  67. Turnbull MH, Griffin KL, Fyllas NM, Lloyd J, Meir P, Atkin OK (2016) Separating species and environmental determinants of leaf functional traits in temperate rainforest plants along a soil-development chronosequence. Funct Plant Biol 43:751. https://doi.org/10.1071/FP16035

    CAS  Article  Google Scholar 

  68. Van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245. https://doi.org/10.1111/j.1461-0248.2009.01418.x

    Article  PubMed  Google Scholar 

  69. Van Kleunen M, Dawson W, Essl F, Pergl J et al (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103. https://doi.org/10.1038/nature14910

    CAS  Article  PubMed  Google Scholar 

  70. Violle C, Jiang L (2009) Towards a trait-based quantification of species niche. J Plant Ecol 2:87–93. https://doi.org/10.1093/jpe/rtp007

    Article  Google Scholar 

  71. Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  72. Wagner WL, Herbst DR, Lorence DH (2005) Flora of the Hawaiian islands website. http://botany.si.edu/pacificislandbiodiversity/hawaiianflora/index.htm

  73. Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164

    Article  Google Scholar 

  74. Wright IJ, Westoby M, Reich PB, Oleksyn J et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. https://doi.org/10.1038/nature02403

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Yelenik SG, D’Antonio CM, August-Schmidt E (2017) The influence of soil resources and plant traits on invasion and restoration in a subtropical woodland. Plant Ecol 218:1149–1161. https://doi.org/10.1007/s11258-017-0757-3

    Article  Google Scholar 

  76. Young SL, Barney JN, Kyser GB, Jones TS, Ditomaso JM (2009) Functionally similar species confer greater resistance to invasion: implications for grassland restoration. Restor Ecol 17:884–892. https://doi.org/10.1111/j.1526-100X.2008.00448.x

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the U.S. Geological Survey. The authors thank Ali Ainsworth for access and help with Inventory and Monitoring data and the Damschen Lab provided helpful comments. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1747503. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Support was also provided by the Graduate School and the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin, Madison with funding from the Wisconsin Alumni Research Foundation.

Author information

Affiliations

Authors

Contributions

Authorship order was determined using a “sequence determines credit” model. JJH and SGY conceived study design, JJH collected data and conducted analyses, all authors developed ideas and wrote paper.

Corresponding author

Correspondence to Jonathan J. Henn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jennifer Funk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1056 kb)

Supplementary material 2 (XLSX 66kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henn, J.J., Yelenik, S. & Damschen, E.I. Environmental gradients influence differences in leaf functional traits between native and non-native plants. Oecologia 191, 397–409 (2019). https://doi.org/10.1007/s00442-019-04498-7

Download citation

Keywords

  • Environmental gradient
  • Functional traits
  • Hawaiʻi
  • Invasion mechanisms