Invasive knotweed has greater nitrogen-use efficiency than native plants: evidence from a 15N pulse-chasing experiment

Abstract

Habitats with fluctuating resource conditions pose specific challenges to plants, and they often favor a small subset of species that includes exotic invaders. These species must possess a superior ability to capitalize on resource pulses through faster resource uptake or greater resource-use efficiency. We addressed this question in an experiment with invasive knotweed, a noxious invader of temperate ecosystems that is known to benefit from nutrient fluctuations. We used stable isotopes to track the uptake and use efficiency of a nitrogen pulse in competition pairs between knotweed and five native competitors. We found that nitrogen pulses indeed promoted knotweed invasion and that this is explained by a superior efficiency in turning the taken-up extra nitrogen into biomass, rather than capturing an overproportional share of the nitrogen. Thus, temporary increases in nutrient availability might help knotweed to invade natural environments, such as river banks or nitrogen-polluted margins and wastelands, where nutrient fluctuations occur. Our experiment shows that resource-use efficiency can drive invasion under fluctuating resource conditions, and that stable isotopes help to understand these processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. https://doi.org/10.1016/S0065-2504(08)60016-1

    CAS  Article  Google Scholar 

  2. Aguilera AG, Alpert P, Dukes JS, Harrington R (2010) Impacts of the invasive plant Fallopia japonica (Houtt.) on plant communities and ecosystem processes. Biol Invasions 12:1243–1252. https://doi.org/10.1007/s10530-009-9543-z

    Article  Google Scholar 

  3. Bailey JP, Connolly AP (2000) Prize winners to pariahs—a history of Japanese knotweed s.l. (Polygonaceae) in the British Isles. Watsonia 23:93–110

    Google Scholar 

  4. Bailey JP, Bímová K, Mandák B (2009) Asexual spread versus sexual reproduction and evolution in Japanese Knotweed s.l. sets the stage for the “Battle of the Clones”. Biol Invasions 11:1189–1203. https://doi.org/10.1007/s10530-008-9381-4

    Article  Google Scholar 

  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  6. Berg MP, Ellers J (2010) Trait plasticity in species interactions: a driving force of community dynamics. Evol Ecol 24:617–629. https://doi.org/10.1007/s10682-009-9347-8.pdf

    Article  Google Scholar 

  7. Blumenthal DM (2006) Interactions between resource availability and enemy release in plant invasion. Ecol Lett 9:887–895. https://doi.org/10.1111/j.1461-0248.2006.00934.x

    Article  PubMed  Google Scholar 

  8. Blumenthal D, Mitchell CE, Pyšek P, Jarosik V (2009) Synergy between pathogen release and resource availability in plant invasion. Proc Natl Acad Sci USA 106:7899–7904. https://doi.org/10.1073/pnas.0812607106

    Article  PubMed  Google Scholar 

  9. Bridgham SD, Pastor J, McClaugherty CA, Richardson CJ (1995) Nutrient-use efficiency—a litterfall index, a model, and a test along a nutrient-availability gradient in North Carolina peatlands. Am Nat 145:1–21. https://doi.org/10.1086/285725

    Article  Google Scholar 

  10. Brooks PD, Geilmann H, Werner RA, Brand WA (2003) Improved precision of coupled 13C and 15N measurements from single samples using an elemental analyzer/isotope ratio mass spectrometer combination with a post-column six-port valve and selective CO2 trapping; improved halide robustness of the combustion reactor using CeO2. Rapid Commun Mass Spectrom 17:1924–1926. https://doi.org/10.1002/rcm.1134

    CAS  Article  PubMed  Google Scholar 

  11. Chapin FS (1980) The mineral-nutrition of wild plants. Annu Rev Ecol Syst 11:233–260. https://doi.org/10.1146/annurev.es.11.110180.001313

    CAS  Article  Google Scholar 

  12. Chmura D, Krywult W, Kozak JL (2016) Nitrate reductase activity (NRA) in the invasive alien Fallopia japonica: seasonal variation, differences among habitats types, and comparison with native species. Acta Soc Bot Pol 85:3514. https://doi.org/10.5586/asbp.3514

    CAS  Article  Google Scholar 

  13. Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902. https://doi.org/10.1080/01904160009382068

    CAS  Article  Google Scholar 

  14. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144. https://doi.org/10.1086/283241

    Article  Google Scholar 

  15. Craine JM, Dybzinski R (2013) Mechanisms of plant competition for nutrients, water and light. Funct Ecol 27:833–840. https://doi.org/10.1111/1365-2435.12081

    Article  Google Scholar 

  16. Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211. https://doi.org/10.1146/annurev.ecolsys.34.011802.132403

    Article  Google Scholar 

  17. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431. https://doi.org/10.1111/j.1461-0248.2011.01596.x

    Article  PubMed  Google Scholar 

  18. Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecol Lett 4:421–428. https://doi.org/10.1046/j.1461-0248.2001.00246.x

    Article  Google Scholar 

  19. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. https://doi.org/10.1046/j.1365-2745.2000.00473.x

    Article  Google Scholar 

  20. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Evol Syst 33:507–559. https://doi.org/10.1146/annurev.ecolsys.33.020602.095451

    Article  Google Scholar 

  21. Dawson W, Rohr RP, van Kleunen M, Fischer M (2012) Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. New Phytol 194:859–867. https://doi.org/10.1111/j.1469-8137.2012.04104.x

    Article  PubMed  Google Scholar 

  22. Ens E, Hutley LB, Rossiter-Rachor NA, Douglas MM, Setterfield SA (2015) Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia. Front Plant Sci 6:10. https://doi.org/10.3389/fpls.2015.00560

    Article  Google Scholar 

  23. Fukami T, Bezemer TM, Mortimer SR, van der Putten WH (2005) Species divergence and trait convergence in experimental plant community assembly. Ecol Lett 8:1283–1290. https://doi.org/10.1111/j.1461-0248.2005.00829.x

    Article  Google Scholar 

  24. Funk JL (2008) Differences in plasticity between invasive and native plants from a low resource environment. J Ecol 96:1162–1173. https://doi.org/10.1111/j.1365-2745.2008.01435.x

    Article  Google Scholar 

  25. Funk JL (2013) The physiology of invasive plants in low-resource environments. Conserv Physiol 1:17. https://doi.org/10.1093/conphys/cot026

    Article  Google Scholar 

  26. Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081. https://doi.org/10.1038/nature05719

    CAS  Article  PubMed  Google Scholar 

  27. Gioria M, Osborne BA (2014) Resource competition in plant invasions: emerging patterns and research needs. Front Plant Sci 5:501. https://doi.org/10.3389/fpls.2014.00501

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gowton C, Budsock A, Matlaga D (2016) Influence of disturbance on Japanese Knotweed (Fallopia japonica) stem and rhizome fragment recruitment success within riparian forest understory. Nat Areas J 36:259–267. https://doi.org/10.3375/043.036.0306

    Article  Google Scholar 

  29. Grace JB, Tilman D (1990) Perspectives on plant competition. Academic Press, San Diego. https://doi.org/10.1017/s0266467400005265

    Book  Google Scholar 

  30. Grime JP (1979) Plant strategies and vegetation processes. John Wiley, Chichester

    Google Scholar 

  31. Harper JL (1961) Approaches to the study of plant competition. Symp Soc Exp Biol 15:1–39

    Google Scholar 

  32. Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862. https://doi.org/10.1111/j.1461-0248.2011.01651.x

    Article  PubMed  Google Scholar 

  33. Harpole WS, Sullivan LL, Lind EM, Firn J, Adler PB, Borer ET, Chase J, Fay PA, Hautier Y, Hillebrand H, MacDougall AS, Seabloom EW, Williams R, Bakker JD, Cadotte MW, Chaneton EJ, Chu C, Cleland EE, D’Antonio C, Davies KF, Gruner DS, Hagenah N, Kirkman K, Knops JMH, La Pierre KJ, McCulley RL, Moore JL, Morgan JW, Prober SM, Risch AC, Schuetz M, Stevens CJ, Wragg PD (2016) Addition of multiple limiting resources reduces grassland diversity. Nature 537:93–96. https://doi.org/10.1038/nature19324

    CAS  Article  PubMed  Google Scholar 

  34. Huangfu CH, Li HY, Chen XW, Liu HM, Wang H, Yang DL (2016) Response of an invasive plant, Flaveria bidentis, to nitrogen addition: a test of form-preference uptake. Biol Invasions 18:3365–3380. https://doi.org/10.1007/s10530-016-1231-1

    Article  Google Scholar 

  35. Invasive Species Specialist Group (2016) Polygonum cuspidatum Sieb. and Zucc. (= Fallopia japonica (Houtt. Dcne.)). Global invasive species database. International Union for Conservation of Nature. http://www.iucngisd.org/. Accessed 13 Dec 2016

  36. James JJ, Richards JH (2006) Plant nitrogen capture in pulse-driven systems: interactions between root responses and soil processes. J Ecol 94:765–777. https://doi.org/10.1111/j.1365-2745.2006.01137.x

    CAS  Article  Google Scholar 

  37. Kahmen A, Renker C, Unsicker SB, Buchmann N (2006) Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship. Ecology 87:1244–1255. https://doi.org/10.1890/0012-9658(2006)87%5b1244:ncfnae%5d2.0.co;2

    Article  PubMed  Google Scholar 

  38. Keddy PA (2007) Plants and vegetation: origins, processes, consequences. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511812989

    Book  Google Scholar 

  39. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: tests in linear mixed effects models. J Stat Softw 82:1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  40. Leishman MR, Thomson VP (2005) Experimental evidence for the effects of additional water, nutrients and physical disturbance on invasive plants in low fertility Hawkesbury Sandstone soils, Sydney, Australia. J Ecol 93:38–49. https://doi.org/10.1111/j.1365-2745.2004.00938.x

    Article  Google Scholar 

  41. Littschwager J, Lauerer M, Blagodatskaya E, Kuzyakov Y (2010) Nitrogen uptake and utilisation as a competition factor between invasive Duchesnea indica and native Fragaria vesca. Plant Soil 331:105–114. https://doi.org/10.1007/s11104-009-0236-2

    CAS  Article  Google Scholar 

  42. Liu Y, van Kleunen M (2017) Responses of common and rare aliens and natives to nutrient availability and fluctuations. J Ecol 105:1111–1122. https://doi.org/10.1111/1365-2745.12733

    CAS  Article  Google Scholar 

  43. Lu XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013) Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Glob Change Biol 19:2775–2784. https://doi.org/10.1111/gcb.12235

    Article  Google Scholar 

  44. Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97(2):199–205. https://doi.org/10.1111/j.1365-2745.2008.01476.x

    Article  Google Scholar 

  45. Mamolos AP, Veresoglou DS, Barbayiannis N (1995) Plant-species abundance and tissue concentrations of limiting nutrients in low-nutrient grasslands—a test of competition theory. J Ecol 83:485–495. https://doi.org/10.2307/2261601

    Article  Google Scholar 

  46. Osone Y, Yazaki K, Masaki T, Ishida A (2014) Responses to nitrogen pulses and growth under low nitrogen availability in invasive and native tree species with differing successional status. J Plant Res 127:315–328. https://doi.org/10.1007/s10265-013-0609-8

    CAS  Article  PubMed  Google Scholar 

  47. Parepa M, Fischer M, Bossdorf O (2013) Environmental variability promotes plant invasion. Nat Commun 4:1604. https://doi.org/10.1038/ncomms2632

    CAS  Article  PubMed  Google Scholar 

  48. Qing H, Cai Y, Xiao Y, Yao YH, An SQ (2015) Nitrogen uptake and use efficiency of invasive spartina alterniflora and native Phragmites australis: effect of nitrogen supply. Clean-Soil Air Water 43:305–311. https://doi.org/10.1002/clen.201300867

    CAS  Article  Google Scholar 

  49. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.r-project.org/. Accessed 6 Aug 2019

  50. Randall RP (2017) A global compendium of weeds, 3rd edn. Randall RP, Perth. https://nla.gov.au/nla.obj-512788350. Accessed 20 Apr 2018

  51. Rumlerová Z, Vilà M, Pergl J, Nentwig W, Pyšek P (2016) Scoring environmental and socioeconomic impacts of alien plants invasive in Europe. Biol Invasions 18:3697–3711. https://doi.org/10.1007/s10530-016-1259-2

    Article  Google Scholar 

  52. Shen XY, Peng SL, Chen BM, Pang JX, Chen LY, Xu HM, Hou YP (2011) Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biol Invasions 13:869–881. https://doi.org/10.1007/s10530-010-9875-8

    Article  Google Scholar 

  53. Stuble KL, Souza L (2016) Priority effects: natives, but not exotics, pay to arrive late. J Ecol 104:987–993. https://doi.org/10.1111/1365-2745.12583

    Article  Google Scholar 

  54. van Kleunen M, Bossdorf O, Dawson W (2018) The ecology and evolution of alien plants. Annu Rev Ecol Evol Syst 49:25–47. https://doi.org/10.1146/annurev-ecolsys-110617-062654

    Article  Google Scholar 

  55. Werner RA, Bruvh BA, Brand WA (1999) ConFlo III—an interface for high precision δ13C and δ15N analysis with an extended dynamic range. Rapid Commun Mass Spectrom 13:1237–1241. https://doi.org/10.1002/(SICI)1097-0231(19990715)13:13%3c1237:AID-RCM633%3e3.0.CO;2-C

    CAS  Article  PubMed  Google Scholar 

  56. Werner C, Zumkier U, Beyschlag W, Maguas C (2010) High competitiveness of a resource demanding invasive acacia under low resource supply. Plant Ecol 206:83–96. https://doi.org/10.1007/s11258-009-9625-0

    Article  Google Scholar 

  57. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York. https://doi.org/10.1007/978-0-387-98141-3

    Book  Google Scholar 

  58. Wilsey BJ, Barber K, Martin LM (2015) Exotic grassland species have stronger priority effects than natives regardless of whether they are cultivated or wild genotypes. New Phytol 205:928–937. https://doi.org/10.1111/nph.13028

    Article  PubMed  Google Scholar 

  59. Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses? Ecology 89:621–626. https://doi.org/10.1890/07-0175

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nina Buchmann for advice and discussion on the experimental design, Yvonne Zürcher and Carole Adolf for assistance with measurements and processing the biomass samples, and the Botanical Garden in Bern for providing space for the experiment. We thank Casey terHorst and three anonymous reviewers for their helpful comments on previous versions of the manuscript. This work was supported by the Swiss National Science Foundation (SNF Project No. 122408 to OB) and the German Research Foundation (DFG Project PA 2608/2-1 to MP).

Author information

Affiliations

Authors

Contributions

OB and MP formulated the idea and conceived the experiment. MP, OB, AK, RW, and MF designed the experiment. MP and AK performed the experiment and RW performed the isotope analysis. MP analyzed the data. MP and OB wrote the manuscript; all other authors provided editorial advice.

Corresponding author

Correspondence to Madalin Parepa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Casey P. terHorst.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parepa, M., Kahmen, A., Werner, R.A. et al. Invasive knotweed has greater nitrogen-use efficiency than native plants: evidence from a 15N pulse-chasing experiment. Oecologia 191, 389–396 (2019). https://doi.org/10.1007/s00442-019-04490-1

Download citation

Keywords

  • Biological invasions
  • Fluctuating resources
  • Interspecific competition
  • Invasiveness
  • Stable isotopes