, Volume 191, Issue 1, pp 97–112 | Cite as

Kin-dependent dispersal influences relatedness and genetic structuring in a lek system

  • Hugo CayuelaEmail author
  • Laurent Boualit
  • Martin Laporte
  • Jérôme G. Prunier
  • Françoise Preiss
  • Alain Laurent
  • Francesco Foletti
  • Jean Clobert
  • Gwenaël Jacob
Population ecology – original research


Kin selection and dispersal play a critical role in the evolution of cooperative breeding systems. Limited dispersal increases relatedness in spatially structured populations (population viscosity), with the result that neighbours tend to be genealogical relatives. Yet the increase in neighbours’ fitness-related performance through altruistic interaction may also result in habitat saturation and thus exacerbate local competition between kin. Our goal was to detect the footprint of kin selection and competition by examining the spatial structure of relatedness and by comparing non-effective and effective dispersal in a population of a lekking bird, Tetrao urogallus. For this purpose, we analysed capture–recapture and genetic data collected over a 6-year period on a spatially structured population of T. urogallus in France. Our findings revealed a strong spatial structure of relatedness in males. They also indicated that the population viscosity could allow male cooperation through two non-exclusive mechanisms. First, at their first lek attendance, males aggregate in a lek composed of relatives. Second, the distance corresponding to non-effective dispersal dramatically outweighed effective dispersal distance, which suggests that dispersers incur high post-settlement costs. These two mechanisms result in strong population genetic structuring in males. In females, our findings revealed a lower level of spatial structure of relatedness and genetic structure in respect to males. Additionally, non-effective dispersal and effective dispersal distances in females were highly similar, which suggests limited post-settlement costs. These results indicate that kin-dependent dispersal decisions and costs have a genetic footprint in wild populations and are factors that may be involved in the evolution of cooperative courtship.


Cooperation Sociality Dispersal Relatedness Genetic structuring Bird Tetrao urogallus 



The genetic monitoring of capercaillie in the Vosges Mountains was funded by the Life + Project “Des Forêts pour le Grand tetras”, by the Natura2000 network and by the regional programme of the Capercaillie National Action Plan initiated by the French Ministry of Environment. The project largely relied on the work of volunteers who collected samples during the 6 years of the study: Antoine Andre, Didier Arseguel, Samuel Audinot, Alix Badre, Etienne Barbier, Dominique Becker, Bernard Binetruy, Frédéric Bocquenet, Noémie Castaing, Sebastien Coulette, Stéphane Damervalle, Luc Dauphin, Richard Delaunay, Lucile Demaret, Michel Despoulin, Laurent Domergue, Vincent Drillon, Christian Dronneau, Fabien Dupont, Arnaud Foltzer, Patrick Foltzer, Marc Gehin, Cyril Gerard, Maxime Girardin, Remi Grandemange, Jean-Claude Gregy, Joaquim Hatton, Thibaut Hingray, Thierry Hue, Arnaud Hurstel, Jean-Nöel Journot, Fabien Kilque, Lydie Lallement, Christian Lamboley, Manuel Lembke, Jean-Michel Letz, Vincent Lis, Olivier Marchand, Paul Massard, Yvan Mougel, Michel Munier, Louis-Michel Nageleisen, Yvan Nicolas, Christian Oberle, Pascal Perrotey-Doridant, Christian Philipps, François Rey-Demaneuf, Dorian Toussaint, Jean-Marie Triboulot, Bruno Vaxelaire, Laurent Verard, Jean-Lou Zimmermann, and Alice Zimmermann. We also thank Jacob Höglund and the other anonymous referee for their constructive comments that helped to improve the manuscript.

Author contribution statement

GJ, JC and HC conceived the ideas and designed methodology. FP and AL collected the data. HC, ML, FF, JGP and LB analysed the data. HC led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Supplementary material

442_2019_4484_MOESM1_ESM.docx (46 kb)
Supplementary material 1 (DOCX 45 kb)
442_2019_4484_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)
442_2019_4484_MOESM3_ESM.docx (78 kb)
Supplementary material 3 (DOCX 77 kb)
442_2019_4484_MOESM4_ESM.docx (817 kb)
Supplementary material 4 (DOCX 817 kb)
442_2019_4484_MOESM5_ESM.docx (19 kb)
Supplementary material 5 (DOCX 18 kb)
442_2019_4484_MOESM6_ESM.docx (182 kb)
Supplementary material 6 (DOCX 181 kb)


  1. Alatalo RV, Höglund J, Lundberg A, Sutherland WJ (1992) Evolution of black grouse leks: female preferences benefit males in larger leks. Behav Ecol 3:53–59CrossRefGoogle Scholar
  2. Anderson CD, Epperson BK, Fortin MJ, Holderegger R, James P, Rosenberg MS, Scribner KT, Spear S (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575CrossRefGoogle Scholar
  3. Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326CrossRefGoogle Scholar
  4. Beehler BM, Foster MS (1988) Hotshots, hotspots, and female preference in the organization of lek mating systems. Am Nat 131:203–219CrossRefGoogle Scholar
  5. Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M, Barton K, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM, Palmer SCF, Turlure C, Travis JMJ (2012) Costs of dispersal. Biol Rev 87:290–312CrossRefGoogle Scholar
  6. Bourke AF (2011) The validity and value of inclusive fitness theory. Proc R Soc Lond B Biol Sci 278:3313–3320CrossRefGoogle Scholar
  7. Bradbury JW, Gibson RM (1983) Leks and mate choice. In: Batson P (ed) mate choice. Cambridge University Press, Cambridge, pp 109–138Google Scholar
  8. Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216CrossRefGoogle Scholar
  9. Bush KL, Aldridge CL, Carpenter JE, Paszkowski CA, Boyce MS, Coltman DW, Scribner KT (2010) Birds of a feather do not always lek together: genetic diversity and kinship structure of greater sage-grouse (Centrocercus urophasianus) in Alberta. Auk 127:343–353CrossRefGoogle Scholar
  10. Cayuela H, Pradel R, Joly P, Besnard A (2017) Analysing movement behaviour and dynamic space-use strategies among habitats using multi-event capture-recapture modelling. Methods Ecol Evol 8:1124–1132CrossRefGoogle Scholar
  11. Cayuela H, Pradel R, Joly P, Bonnaire E, Besnard A (2018a) Estimating dispersal in spatiotemporally variable environments using multievent capture–recapture modeling. Ecology 99:1150–1163CrossRefGoogle Scholar
  12. Cayuela H, Rougemont Q, Prunier JG, Moore JS, Clobert J, Besnard A, Bernatchez L (2018b) Demographic and genetic approaches to study dispersal in wild animal populations: a methodological review. Mol Ecol 27:3976–4010CrossRefGoogle Scholar
  13. Choquet R, Lebreton JD, Gimenez O, Reboulet AM, Pradel R (2009a) U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32:1071–1074CrossRefGoogle Scholar
  14. Choquet R, Rouan L, Pradel R (2009b) Program E-SURGE: a software application for fitting multievent models. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer, New York, pp 845–865CrossRefGoogle Scholar
  15. Clarke AL, Sæther BE, Røskaft E (1997) Sex biases in avian dispersal: a reappraisal. Oikos 79:429–438CrossRefGoogle Scholar
  16. Clobert J, Galliard L, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209CrossRefGoogle Scholar
  17. Clutton-Brock T (2002) Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296:69–72CrossRefGoogle Scholar
  18. Clutton-Brock T (2009) Cooperation between non-kin in animal societies. Nature 462(7269):51CrossRefGoogle Scholar
  19. Concannon MR, Stein AC, Uy JAC (2012) Kin selection may contribute to lek evolution and trait introgression across an avian hybrid zone. Mol Ecol 21:1477–1486CrossRefGoogle Scholar
  20. Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163(1):367–374Google Scholar
  21. Cotto O, Kubisch A, Ronce O (2014) Optimal life-history strategy differs between philopatric and dispersing individuals in a metapopulation. Am Nat 183:384–393CrossRefGoogle Scholar
  22. Davis DM, Reese KP, Gardner SC, Bird KL (2015) Genetic structure of Greater Sage-Grouse (Centrocercus urophasianus) in a declining, peripheral population. Condor 117:530–544CrossRefGoogle Scholar
  23. Dickinson JL, Euaparadorn M, Greenwald K, Mitra C, Shizuka D (2009) Cooperation and competition: nepotistic tolerance and intrasexual aggression in western bluebird winter groups. Anim Behav 77:867–872CrossRefGoogle Scholar
  24. DuVal EH (2007) Adaptive advantages of cooperative courtship for subordinate male lance-tailed manakins. Am Nat 169:423–432CrossRefGoogle Scholar
  25. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  26. El Mouden C, Gardner A (2008) Nice natives and mean migrants: the evolution of dispersal-dependent social behaviour in viscous populations. J Evol Biol 21:1480–1491CrossRefGoogle Scholar
  27. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  28. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50CrossRefGoogle Scholar
  29. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587Google Scholar
  30. Forero MG, Donázar JA, Hiraldo F (2002) Causes and fitness consequences of natal dispersal in a population of black kites. Ecology 83:858–872CrossRefGoogle Scholar
  31. Francisco MR, Gibbs HL, Galetti PM Jr (2009) Patterns of individual relatedness at blue manakin (Chiroxiphia caudata) leks. Auk 126:47–53CrossRefGoogle Scholar
  32. Gibson RM, Pires D, Delaney KS, Wayne RK (2005) Microsatellite DNA analysis shows that greater sage grouse leks are not kin groups. Mol Ecol 14:4453–4459CrossRefGoogle Scholar
  33. Girard P, Angers B (2008) Assessment of power and accuracy of methods for detection and frequency estimation of null alleles. Genetica 134:187–197CrossRefGoogle Scholar
  34. Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using biparentally inherited genetic markers. Mol Ecol 11:1103–1114CrossRefGoogle Scholar
  35. Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21CrossRefGoogle Scholar
  36. Griffin AS, West SA (2003) Kin discrimination and the benefit of helping in cooperatively breeding vertebrates. Science 302:634–636CrossRefGoogle Scholar
  37. Hamilton WD (1964) The genetical evolution of social behaviour. II. J Theor Biol 7:17–52CrossRefGoogle Scholar
  38. Hansson B, Bensch S, Hasselquist D (2004) Lifetime fitness of short-and long-distance dispersing great reed warblers. Evolution 58:2546–2557CrossRefGoogle Scholar
  39. Hepper PG (ed) (2005) Kin recognition. Cambridge University Press, CambridgeGoogle Scholar
  40. Hjeljord O, Wegge P, Rolstad J, Ivanova M, Beshkarev AB (2000) Spring-summer movements of male capercaillie Tetrao urogallus: a test of the ‘landscape mosaic’ hypothesis. Wildl Biol 6:251–256CrossRefGoogle Scholar
  41. Höglund J (2003) Lek-kin in birds—provoking theory and surprising new results. Ann Zool Fenn 40:249–253Google Scholar
  42. Höglund J, Alatalo RV (2014) Leks. Princeton University Press, PrincetonGoogle Scholar
  43. Höglund J, Shorey L (2003) Local genetic structure in a white-bearded manakin population. Mol Ecol 12(9):2457–2463CrossRefGoogle Scholar
  44. Höglund J, Alatalo RV, Lundberg A, Rintamäki PT, Lindell J (1999) Microsatellite markers reveal the potential for kin selection on black grouse leks. Proc R Soc Lond B Biol Sci 266:813–816CrossRefGoogle Scholar
  45. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefGoogle Scholar
  46. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefGoogle Scholar
  47. Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103CrossRefGoogle Scholar
  48. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94CrossRefGoogle Scholar
  49. Kokko H, Johnstone RA (1999) Social queuing in animal societies: a dynamic model of reproductive skew. Proc R Soc Lond B Biol Sci 266:571–578CrossRefGoogle Scholar
  50. Kokko H, Lindstrom J (1996) Kin selection and the evolution of leks: whose success do young males maximize? Proc R Soc Lond B Biol Sci 263:919–923CrossRefGoogle Scholar
  51. Kokko H, Mackenzie A, Reynolds JD, Lindström J, Sutherland WJ (1999) Measures of inequality are not equal. Am Nat 154:358–382CrossRefGoogle Scholar
  52. Komdeur J, Richardson DS, Hatchwell B (2008) Kin-recognition mechanisms in cooperative breeding systems: ecological causes and behavioral consequences of variation. Ecology of social evolution. Springer, Berlin, Heidelberg, pp 175–193CrossRefGoogle Scholar
  53. Krakauer AH (2005) Kin selection and cooperative courtship in wild turkeys. Nature 434:69–72CrossRefGoogle Scholar
  54. Lagrange P, Pradel R, Bélisle M, Gimenez O (2014) Estimating dispersal among numerous sites using capture–recapture data. Ecology 95:2316–2323CrossRefGoogle Scholar
  55. Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19(19):4179–4191CrossRefGoogle Scholar
  56. Le Galliard JF, Ferrière R, Dieckmann U (2003) The adaptive dynamics of altruism in spatially heterogeneous populations. Evolution 57:1–17CrossRefGoogle Scholar
  57. Le Galliard JF, Ferriere R, Dieckmann U (2004) Adaptive evolution of social traits: origin, trajectories, and correlations of altruism and mobility. Am Nat 165:206–224CrossRefGoogle Scholar
  58. Lebigre C, Alatalo RV, Forss HE, Siitari H (2008) Low levels of relatedness on black grouse leks despite male philopatry. Mol Ecol 17:4512–4521CrossRefGoogle Scholar
  59. Lebigre C, Alatalo RV, Siitari H (2010) Female-biased dispersal alone can reduce the occurrence of inbreeding in black grouse (Tetrao tetrix). Mol Ecol 19:1929–1939CrossRefGoogle Scholar
  60. Lebreton JD, Nichols JD, Barker RJ, Pradel R, Spendelow JA (2009) Modeling individual animal histories with multistate capture–recapture models. Adv Ecol Res 41:87–173CrossRefGoogle Scholar
  61. Legendre P, Legendre LFJ (1998) Numerical ecology. Elsevier Science B.V, AmsterdamGoogle Scholar
  62. Loiselle BA, Ryder TB, Duraes R, Tori W, Blake JG, Parker PG (2006) Kin selection does not explain male aggregation at leks of 4 manakin species. Behav Ecol 18:287–291CrossRefGoogle Scholar
  63. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051CrossRefGoogle Scholar
  64. Madden JR, Lowe TJ, Fuller HV, Coe RL, Dasmahapatra KK, Amos W, Jury F (2004) Neighbouring male spotted bowerbirds are not related, but do maraud each other. Anim Behav 68:751–758CrossRefGoogle Scholar
  65. Matthysen E (2012) Multicausality of dispersal: a review. Dispers Ecol Evol 27:3–18CrossRefGoogle Scholar
  66. McDonald DB (2009) Young-boy networks without kin clusters in a lek-mating manakin. Behav Ecol Sociobiol 63:1029–1034CrossRefGoogle Scholar
  67. McDonald DB, Potts WK (1994) Cooperative display and relatedness among males in a lek-mating bird. Science 266:1030–1032CrossRefGoogle Scholar
  68. Møller AP, Alatalo RV (1999) Good-genes effects in sexual selection. Proc R Soc Lond B Biol Sci 266:85–91CrossRefGoogle Scholar
  69. Nystrand M (2007) Associating with kin affects the trade-off between energy intake and exposure to predators in a social bird species. Anim Behav 74:497–506CrossRefGoogle Scholar
  70. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67(4):518–536CrossRefGoogle Scholar
  71. Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23:2402–2413CrossRefGoogle Scholar
  72. Petrie M, Krupa A, Burke T (1999) Peacocks lek with relatives even in the absence of social and environmental cues. Nature 401:155CrossRefGoogle Scholar
  73. Piertney SB, Lambin X, Maccoll AD, Lock K, Bacon PJ, Dallas JF, Leckie F, Mougeot F, Racey PA, Redpath S, Moss R (2008) Temporal changes in kin structure through a population cycle in a territorial bird, the red grouse Lagopus lagopus scoticus. Mol Ecol 17:2544–2551CrossRefGoogle Scholar
  74. Platt TG, Bever JD (2009) Kin competition and the evolution of cooperation. Trends Ecol Evol 24:370–377CrossRefGoogle Scholar
  75. Pradel R (2005) Multievent: an extension of multistate capture–recapture models to uncertain states. Biometrics 61:442–447CrossRefGoogle Scholar
  76. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  77. Prugnolle F, De Meeûs T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161CrossRefGoogle Scholar
  78. Pusey AE (1987) Sex-biased dispersal and inbreeding avoidance in birds and mammals. Trends Ecol Evol 2:295–299CrossRefGoogle Scholar
  79. Queller DC (1992) A general model for kin selection. Evolution 46:376–380CrossRefGoogle Scholar
  80. Regnaut S, Christe P, Chapuisat M, Fumagalli L (2006) Genotyping faeces reveals facultative kin association on capercaillie’s leks. Conserv Genet 7:665–674CrossRefGoogle Scholar
  81. Reynolds SM, Christman MC, Uy JAC, Patricelli GL, Braun MJ, Borgia G (2009) Lekking satin bowerbird males aggregate with relatives to mitigate aggression. Behav Ecol 20:410–415CrossRefGoogle Scholar
  82. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  83. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253CrossRefGoogle Scholar
  84. Rosher C, Favati A, Dean R, Løvlie H (2017) Relatedness and age reduce aggressive male interactions over mating in domestic fowl. Behav Ecol 28:760–766CrossRefGoogle Scholar
  85. Segelbacher G, Wegge P, Sivkov AV, Höglund J (2007) Kin groups in closely spaced capercaillie leks. J Ornithol 148:79–84CrossRefGoogle Scholar
  86. Shorey L, Piertney S, Stone J, Höglund J (2000) Fine-scale genetic structuring on Manacus manacus leks. Nature 408:352CrossRefGoogle Scholar
  87. Sinervo B, Clobert J (2003) Morphs, dispersal behavior, genetic similarity, and the evolution of cooperation. Science 300:1949–1951CrossRefGoogle Scholar
  88. Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573CrossRefGoogle Scholar
  89. Städele V, Vigilant L (2016) Strategies for determining kinship in wild populations using genetic data. Ecol Evol 6(17):6107–6120CrossRefGoogle Scholar
  90. Storch I (1997) Male territoriality, female range use, and spatial organisation of capercaillie Tetrao urogallus leks. Wildl Biol 3(3/4):149–162CrossRefGoogle Scholar
  91. Szulkin M, Sheldon BC (2008) Dispersal as a means of inbreeding avoidance in a wild bird population. Proc R Soc Lond B Biol Sci 275:703–711CrossRefGoogle Scholar
  92. Tournier E, Besnard A, Tournier V, Cayuela H (2017) Manipulating waterbody hydroperiod affects movement behaviour and occupancy dynamics in an amphibian. Freshw Biol 62:1768–1782CrossRefGoogle Scholar
  93. Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027CrossRefGoogle Scholar
  94. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  95. Verkuil YI, Juillet C, Lank DB, Widemo F, Piersma T (2014) Genetic variation in nuclear and mitochondrial markers supports a large sex difference in lifetime reproductive skew in a lekking species. Ecol Evol 4:3626–3632CrossRefGoogle Scholar
  96. Wang J (2004) Estimating pairwise relatedness from dominant genetic markers. Mol Ecol 13(10):3169–3178CrossRefGoogle Scholar
  97. Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145CrossRefGoogle Scholar
  98. Wang J (2012) Computationally efficient sibship and parentage assignment from multilocus marker data. Genetics 191(1):183–194CrossRefGoogle Scholar
  99. Wegge P, Finne MH, Rolstad J (2007) GPS satellite telemetry provides new insight into capercaillie Tetrao urogallus brood movements. Wildl Biol 13:87–94CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université Laval, Pavillon Charles-Eugène-MarchandQuébecCanada
  2. 2.Department of BiologyUniversity of FribourgFribourgSwitzerland
  3. 3.Theoretical and Experimental Ecology Station (UMR 5371), National Centre for Scientific Research (CNRS)Paul Sabatier University (UPS)MoulisFrance
  4. 4.Groupe Tétras VosgesMunsterFrance

Personalised recommendations