Skip to main content
Log in

Distinct defense strategies allow different grassland species to cope with root herbivore attack

  • Plant-microbe-animal interactions – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Root-feeding insect herbivores are of substantial evolutionary, ecological and economical importance. Plants defend themselves against insect herbivores through a variety of tolerance and resistance strategies. To date, few studies have systematically assessed the prevalence and importance of these strategies for root–herbivore interactions across different plant species. Here, we characterize the defense strategies used by three different grassland species to cope with a generalist root herbivore, the larvae of the European cockchafer Melolontha melolontha. Our results reveal that the different plant species rely on distinct sets of defense strategies. The spotted knapweed (Centaurea stoebe) resists attack by dissuading the larvae through the release of repellent chemicals. White clover (Trifolium repens) does not repel the herbivore, but reduces feeding, most likely through structural defenses and low nutritional quality. Finally, the common dandelion (Taraxacum officinale) allows M. melolontha to feed abundantly but compensates for tissue loss through induced regrowth. Thus, three co-occurring plant species have evolved different solutions to defend themselves against attack by a generalist root herbivore. The different root defense strategies may reflect distinct defense syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149

    Article  PubMed  Google Scholar 

  • Ayres E, Dromph KM, Cook R, Ostle N, Bardgett RD (2007) The influence of below-ground herbivory and defoliation of a legume on nitrogen transfer to neighbouring plants. Funct Ecol 21:256–263

    Article  Google Scholar 

  • Bardgett RD, Denton CS, Cook R (1999) Below-ground herbivory promotes soil nutirent transfer and root growth in grassland. Ecol Lett 2:357–360

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Berenbaum MR (1995) Turnabout is fair play: secondary roles for primary compounds. J Chem Ecol 21:925–940

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD (2002) Root storage proteins, with particular reference to taproots. Can J Bot 80:321–329

    Article  CAS  Google Scholar 

  • Biere A, Goverse A (2016) Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above- and belowground. Annu Rev Phytopathol 54:499–527

    Article  CAS  PubMed  Google Scholar 

  • Bont Z, Arce C, Huber M, Huang W, Mestrot A, Sturrock CJ, Erb M (2017) A herbivore tag-and-trace system reveals contact- and density-dependent repellence of a root toxin. J Chem Ecol 43:295–306

    Article  CAS  PubMed  Google Scholar 

  • Bont Z, Pfander M, Robert CA, Huber M, Poelman EH, Raaijmakers CE, Erb M (2019) Adapted dandelions increase seed dispersal potential when they are attacked by root herbivores. BioRxiv. https://doi.org/10.1101/551630

  • Breitsameter L, Küchenmeister K, Küchenmeister F, Isselstein J (2012) Tolerance to mechanical damage in ten herbaceous grassland plant species. Plant Soil Environ 58:334–339

    Article  Google Scholar 

  • Caradus JR (1977) Structural variation of white clover root systems. N Z J Agric Res 20:213–219

    Article  Google Scholar 

  • Christensen RHB (2019) Ordinal—regression models for ordinal data. R package version 2019.4-25

  • Crush J, Gerard P, Ouyang L, Cooper B, Cousins G (2010) Effect of clover root weevil larval feeding on growth of clover progenies from parents selected for tolerance in field trials. N Z J Agric Res 53:227–234

    Article  Google Scholar 

  • Dawson LA, Grayston SJ, Murray PJ, Pratt SM (2002) Root feeding behaviour of Tipula paludosa (Meig.) (Diptera: Tipulidae) on Lolium perenne (L.) and Trifolium repens (L.). Soil Biol Biochem 34:609–615

    Article  CAS  Google Scholar 

  • Dawson LA, Grayston SJ, Murray PJ, Ross JM, Reid EJ, Treonis AM (2004) Impact of Tipula paludosa larvae on plant growth and the soil microbial community. Appl Soil Ecol 25:51–61

    Article  Google Scholar 

  • de la Peña E, Bonte D (2014) Above- and belowground herbivory jointly impact defense and seed dispersal traits in Taraxacum officinale. Ecol Evol 4:3309–3319

    Article  PubMed  PubMed Central  Google Scholar 

  • Eilers EJ, Talarico G, Hansson BS, Hilker M, Reinecke A (2012) Sensing the underground—ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) Larvae. PLoS One 7:e41357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Glauser G, Robert CAM (2012) Induced immunity against belowground insect herbivores- activation of defenses in the absence of a jasmonate burst. J Chem Ecol 38:629–640

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Huber M, Robert CA, Ferrieri AP, Machado RA, Arce CC (2013) The role of plant primary and secondary metabolites in root-herbivore behaviour, nutrition and physiology. In: Behaviour and physiology of root herbivores. Oxford: Elsevier, pp 53–95

  • Erb M, Robert CA, Marti G, Lu J, Doyen GR, Villard N, Barrière Y, French BW, Wolfender JL, Turlings TC, Gershenzon J (2015) A physiological and behavioral mechanism for leaf herbivore-induced systemic root resistance. Plant Physiol. 169:2884–2894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Liu S, Luo Z, Tang K (2015) Direct saponification preparation and analysis of free and conjugated phytosterols in sugarcane (Saccharum officinarum L.) by reversed-phase high-performance liquid chromatography. Food Chem 181:9–14

    Article  CAS  PubMed  Google Scholar 

  • Gfeller V, Huber M, Förster C, Huang W, Köllner TG, Erb M (2019) Root volatiles in plant-plant interactions I: high root sesquiterpene release is associated with increased germination and growth of plant neighbours. Plant Cell Environ 42:1950–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Evol Syst 8:157–178

    Article  Google Scholar 

  • Hauss R (1975) Methoden und erste Ergebnisse zur Bestimmung der Wirtspflanzen des Maikäferengerlings (Melolontha melolontha L.). Mitteilungen Aus Biol Bundesanst. Für Land- Forstwirtsch. Berl. Dahlen 163:72–77

    Google Scholar 

  • Hauss R, Schütte F (1976) Zur Polyphagle der Engerlinge von Melolontha melolontha L. an Pflanzen aus Wiese und Ödland. Anz. Für Schädlingskunde 49:129–132

    Article  Google Scholar 

  • Hervé MR, Delourme R, Leclair M, Marnet N, Cortesero AM (2014) How oilseed rape (Brassica napus) genotype influences pollen beetle (Meligethes aeneus) oviposition. Arthropod-Plant Interact 8:383–392

    Article  Google Scholar 

  • Huang W, Zwimpfer E, Hervé MR, Bont Z, Erb M (2018) Neighbourhood effects determine plant-herbivore interactions below-ground. J Ecol 106:347–356

    Article  CAS  Google Scholar 

  • Huang W, Gfeller V, Erb M (2019) Root volatiles in plant-plant interactions II: root volatiles alter root chemistry and plant-herbivore interactions of neighbouring plants: Root volatiles increase neighbour susceptibility. Plant Cell Environ 42:1964–1973

  • Huber M, Triebwasser-Freese D, Reichelt M, Heiling S, Paetz C, Chandran JN, Bartram S, Schneider B, Gershenzon J, Erb M (2015) Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.). Phytochemistry 115:89–98

    Article  CAS  PubMed  Google Scholar 

  • Huber M, Epping J, Schulze Gronover C, Fricke J, Aziz Z, Brillatz T, Swyers M, Köllner TG, Vogel H, Hammerbacher A et al (2016) A latex metabolite benefits plant fitness under root herbivore attack. PLoS Biol 14:e1002332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter MD (2001) Out of sight, out of mind: the impacts of root-feeding insects in natural and managed systems. Agric For Entomol 3:3–9

    Article  Google Scholar 

  • Johnson SN, Nielsen UN (2012) Foraging in the dark—chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38:604–614

    Article  CAS  PubMed  Google Scholar 

  • Johnson SN, Hallett PD, Gillespie TL, Halpin C (2010) Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco. Physiol Entomol 35:186–191

    Article  CAS  Google Scholar 

  • Johnson SN, Erb M, Hartley SE (2016a) Roots under attack: contrasting plant responses to below- and aboveground insect herbivory. New Phytol 210:413–418

    Article  PubMed  Google Scholar 

  • Johnson SN, Benefer CM, Frew A, Griffiths BS, Hartley SE, Karley AJ, Rasmann S, Schumann M, Sonnemann I, Robert CAM (2016b) New frontiers in belowground ecology for plant protection from root-feeding insects. Appl Soil Ecol 108:96–107

    Article  Google Scholar 

  • Knochel DG, Seastedt TR (2010) Reconciling contradictory findings of herbivore impacts on spotted knapweed (Centaurea stoebe) growth and reproduction. Ecol Appl 20:1903–1912

    Article  PubMed  Google Scholar 

  • Lenth RV (2019) emmeans: estimated marginal means, aka least-squares means. R package version 1.3.4

  • Lu J, Robert CAM, Riemann M, Cosme M, Mène-Saffrané L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M (2015) Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol 167:1100–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado RAR, Ferrieri AP, Robert CAM, Glauser G, Kallenbach M, Baldwin IT, Erb M (2013) Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytol 200:1234–1246

    Article  CAS  PubMed  Google Scholar 

  • Maia FGM, Ogoshi C, Vieira JF, Pierre RO, Maia JB, Ribeiro Júnior PM, de Abreu MS (2012) Pigments, total soluble phenols and lignin levels of coffee seedlings inoculated with Colletotrichum gloeosporioides. Coffee Sci 7:152–159

    Google Scholar 

  • Neba GA, Newbery DM, Chuyong GB (2016) Limitation of seedling growth by potassium and magnesium supply for two ectomycorrhizal tree species of a Central African rain forest and its implication for their recruitment. Ecol Evol 6:125–142

    Article  PubMed  Google Scholar 

  • Newingham BA, Callaway RM, BassiriRad H (2007) Allocating nitrogen away from a herbivore: a novel compensatory response to root herbivory. Oecologia 153:913–920

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P et al (2019) vegan: community ecology package. R package version 2.5-4

  • Papadopoulou GV, van Dam NM (2017) Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores. Ecol Res 32:13–26

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rasmann S, Agrawal AA (2008) In defense of roots: a research agenda for studying plant resistance to belowground herbivory. Plant Physiol 146:875–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmann S, Agrawal AA (2011) Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus). Am Nat 177:728–737

    Article  PubMed  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  CAS  PubMed  Google Scholar 

  • Robert CAM, Ferrieri RA, Schirmer S, Babst BA, Schueller MJ, Machado RAR, Arce CCM, Hibbard BE, Gershenzon J, Turlings TCJ et al (2014) Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms: induced root herbivore tolerance. Plant Cell Environ 37:2613–2622

    Article  CAS  PubMed  Google Scholar 

  • Rostás M, Cripps MG, Silcock P (2015) Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect. Oecologia 177:487–497

    Article  PubMed  Google Scholar 

  • Schütte F (1996) On the occurrence of the cockchafer (Melolontha melolontha (L.)) dependent on the presence of dandelion (Taraxacum officinale Wiggers). Bull OILBSROP 19:27–33

    Google Scholar 

  • Steinger T, Müller-Schärer H (1992) Physiological and growth responses of Centaurea maculosa (Asteraceae) to root herbivory under varying levels of interspecific plant competition and soil nitrogen availability. Oecologia 91:141–149

    Article  PubMed  Google Scholar 

  • Sukovata L, Jaworski T, Karolewski P, Kolk A (2015) The performance of Melolontha grubs on the roots of various plant species. Turk J Agric For 39:107–116

    Article  CAS  Google Scholar 

  • Tsunoda T, Krosse S, van Dam NM (2017) Root and shoot glucosinolate allocation patterns follow optimal defence allocation theory. J Ecol 105:1256–1266

    Article  CAS  Google Scholar 

  • Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452

    Article  CAS  PubMed  Google Scholar 

  • Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485

    Article  CAS  PubMed  Google Scholar 

  • van Dam NM (2009) Belowground herbivory and plant defenses. Annu Rev Ecol Evol Syst 40:373–391

    Article  Google Scholar 

  • Van der Putten WH (2003) Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology 84:2269–2280

    Article  Google Scholar 

  • Wallinger C, Staudacher K, Schallhart N, Mitterrutzner E, Steiner E-M, Juen A, Traugott M (2014) How generalist herbivores exploit belowground plant diversity in temperate grasslands. Mol Ecol 23:3826–3837

    Article  PubMed  Google Scholar 

  • Weis AE, Franks SJ (2006) Herbivory tolerance and coevolution: an alternative to the arms race? New Phytol 170:423–425

    Article  PubMed  Google Scholar 

  • Weissteiner S, Huetteroth W, Kollmann M, Weißbecker B, Romani R, Schachtner J, Schütz S (2012) Cockchafer larvae smell host root scents in soil. PLoS One 7:e45827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RG, Kachman SD, Martin AR (2001) Seasonal changes in glucose, fructose, sucrose, and fructans in the roots of dandelion. Weed Sci 49:150–155

    Article  CAS  Google Scholar 

  • Zaller JG (2007) Effect of patchy distribution of soil nutrients on root morphology and biomass allocation of selected grassland species: experimental approach. Pol J Ecol 55:731–746

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Zoe Bont, Wei Huang, Noëlle Schenk, Elias Zwimpfer, Gabriel Ulrich, Marlise Zimmermann and Julia Fricke for field collection of M. melolontha larvae, rearing of larvae and technical assistance during experiments, as well as the gardeners of the IPS for their help with plant cultivation.

Funding

This work was supported by a CJS grant from Institut National de la Recherche Agronomique, the Swiss National Science Foundation (Grants #153517 and 157884) and the University of Bern.

Author information

Authors and Affiliations

Authors

Contributions

MRH and ME conceived and designed the experiments. MRH performed the experiments and analyzed the data. MRH and ME interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Maxime R. Hervé.

Ethics declarations

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Data accessibility

The data of this manuscript have been deposited on Figshare (https://doi.org/10.6084/m9.figshare.9163724).

Additional information

Communicated by Colin Mark Orians.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hervé, M.R., Erb, M. Distinct defense strategies allow different grassland species to cope with root herbivore attack. Oecologia 191, 127–139 (2019). https://doi.org/10.1007/s00442-019-04479-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-019-04479-w

Keywords