Skip to main content
Log in

Demographic benefits of early season resources for bumble bee (B. vosnesenskii) colonies

  • Population ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The temporal distribution of resources is an important aspect of habitat quality that can substantially impact population success. Although it is widely accepted that floral resources directly influence wild bee population sizes, we lack experimental data evaluating how resource availability affects colony growth via demographic mechanisms. To achieve this, we tracked marked individuals in bumble bee (Bombus vosnesenskii) colonies to evaluate whether worker survival and reproduction responded to experimentally elevated forage early in colony development. Specifically, we assessed the effect of early resource environment on worker and sexual offspring production, and the survival and body size of individual workers. We also assessed whether responses of colonies differed when exposed to higher or lower resource environments at a relatively smaller (~ 10 workers) or larger (~ 20 workers) size. Resource supplementation always resulted in greater total offspring and male production; however, the influence of supplementation on worker production and quality depended on colony size at the start of supplementation. Among colonies that were initially smaller, colonies that were supplemented produced fewer but larger bodied and longer lived workers compared to control counterparts. Among colonies that were initially larger, colonies that were supplemented produced more workers than corresponding controls, but without changes to worker quality. Collectively, these results provide clear experimental evidence that greater resource availability early in colony development increases overall productivity, and indicate that colonies may pursue different allocation strategies in response to the resource environment, investing in more or better workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Artz DR, Nault BA (2011) Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as Pollinators of Pumpkin. Econ Enomol 104(4):1153–1161

    Article  Google Scholar 

  • Austin MW, Dunlap AS (2019) Intraspecific variation in worker body size makes North American bumble bees (Bombus spp.) less susceptible to decline. Am Nat 194(3):381–394

    Article  PubMed  Google Scholar 

  • Blauw BR, Isaacs R (2014) Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J Appl Ecol 51(4):890–898

    Article  Google Scholar 

  • Boggs CL, Freeman KD (2005) Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144(3):353–361

    Article  PubMed  Google Scholar 

  • Bolker B (2008) Ecological models and data in R. Princeton University Press, Princeton

    Book  Google Scholar 

  • Bommarco R et al (2011) Drastic historic shifts in bumble-bee community composition in Sweden. Proc R Soc Lond Biol Sci 279:309–315

    Article  Google Scholar 

  • Bowers M (1985) Bumble bee colonization, extinction, and reproduction in subalpine meadows in northeastern Utah. Ecology 66:914–927

    Article  Google Scholar 

  • Cane J (1987) Estimation of bee size using intertegular span (Apoidea). J Kansas Entomol Soc 60(1):145–147

    Google Scholar 

  • Carvell et al (2006) Declines in forage availability for bumblebees at a national scale. Biol Conserv 132(4):481–489

    Article  Google Scholar 

  • Carvell C et al (2007) Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable margins. J Appl Ecol 44:29–40

    Article  Google Scholar 

  • Carvell C et al (2011) Bumble bee species’ responses to a targeted conservation measure depend on landscape context and habitat quality. Ecol Appl 21(5):1760–1771

    Article  CAS  PubMed  Google Scholar 

  • Carvell C et al (2017) Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543:547–549

    Article  CAS  PubMed  Google Scholar 

  • Cnaani J et al (2002) Colony development, larval development and worker reproduction in Bombus impatiens Cresson. Insectes Soc 49:164–170

    Article  Google Scholar 

  • Colla SR et al (2012) Assessing declines of North American bumble bees (Bombus spp.) using museum specimens. Biol Conserv 21:3585–3595

    Google Scholar 

  • Cooch E, White G (2016) Program MARK: A gentle introduction. http://www.phidot.org/software/mark/docs/book/. Accessed May 2016

  • Couvillon MJ, Dornhaus A (2011) Location, location, location: larvae position inside the nest is correlated with adult body size in worker bumble-bees (Bombus impatiens). Proc R Soc B Biol Sci 276(1666):2411–2418

    Article  Google Scholar 

  • Cresswell JE et al (2000) An economic model of the limits of foraging range in central place foragers with numerical solutions for bumblebees. Ecol Entomol 25:249–255

    Article  Google Scholar 

  • Crone EE, Williams NM (2016) Bumble bee colony dynamics: quantifying the importance of land use and floral resources for colony growth and queen production. Ecol Lett 19(4):460–468

    Article  PubMed  Google Scholar 

  • Cueva del Castillo R et al (2015) Trade-offs in the evolution of bumblebee colony and body size: a comparative analysis. Ecol Evol 5(18):3914–3926

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimitriew C, Rowe L (2011) The effects of larval nutrition on reproductive performance in a food-limited adult environment. PLoS One 6(3):e17399

    Article  CAS  Google Scholar 

  • Ebadi R et al (1980) Effects of carbon dioxide and low temperature narcosis on honey bees, Apis mellifera. Environ Entomol 9(1):14

    Article  Google Scholar 

  • Goulson D (2010) Bumblebees: behaviour and ecology. Oxford University Press, Oxford, pp 4–150

    Google Scholar 

  • Goulson D et al (2002) Can alloethism in workers of the bumblebee, Bombus terrestris, be explained in terms of foraging efficiency? Anim Behav 64:123–130

    Article  Google Scholar 

  • Greenleaf S et al (2007) Bee foraging ranges and their relationship to body size. Oecologia 153(3):589–596

    Article  PubMed  Google Scholar 

  • Hagen M, Dupont YL (2013) Inter-tegular span and head width as estimators of fresh and dry body mass in bumblebees (Bombus sp.). Insectes Soc. 60:251–257

    Article  Google Scholar 

  • Hagler JR, Jackson CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46:511–543

    Article  CAS  PubMed  Google Scholar 

  • Harrison XA et al (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18

    Article  PubMed  Google Scholar 

  • Haywood S, Perrins CM (1992) Is clutch size in birds affected by environmental conditions during growth? Proc R Soc Lond Biol Sci 249:195–197

    Article  CAS  Google Scholar 

  • Hegland SJ, Boeke L (2006) Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol 31:532–538

    Article  Google Scholar 

  • Hemberger J, Gratton C (2018) Floral resource pulse decreases bumble bee foraging trip duration in central Wisconsin agroecosystem. Ecol Entomol 43(4):447–457

    Article  Google Scholar 

  • Herrmann JD et al (2018) Mean body size predicts colony performance in the common eastern bumble bee (Bombus impatiens). Ecol Entomol. https://doi.org/10.1111/een.12517

    Article  Google Scholar 

  • Hines H, Hendrix SD (2005) Bumble bee (Hymenoptera: Apidae) diversity and abundance in tallgrass prairie patches: effects of local and landscape floral resources. Environ Entomol 34(6):1477–1484

    Article  Google Scholar 

  • Jackson CH (2011) Multi-state models for panel data: the msm package for R. J Stat Softw 38:1–29

    Article  Google Scholar 

  • Kerr JT et al (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180

    Article  CAS  PubMed  Google Scholar 

  • Kerr NZ et al (2019) Integrating vital rates explains optimal worker size for resource return by bumble bee workers. Funct Ecol 33(3):467–478

    Article  Google Scholar 

  • Kim J, Thorp RW (2001) Maternal investment and size-number trade-off in a bee, Megachile apicalis, in seasonal environments. Oecologia 126:451–456

    Article  PubMed  Google Scholar 

  • Kremen C et al (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol Lett 7:1109–1119

    Article  Google Scholar 

  • Leach ME, Drummond F (2018) A review of native wild bee nutritional health. Int J Ecol. https://doi.org/10.1155/2018/9607246

    Article  Google Scholar 

  • Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14(9):343–348

    Article  PubMed  Google Scholar 

  • Lonsdorf E et al (2009) Modelling pollination services across agricultural landscapes. Ann Bot 103(9):1589–1600

    Article  PubMed  PubMed Central  Google Scholar 

  • Malfi R et al (2018) The influence of conopid flies on bumble bee colony productivity under different food resource conditions. Ecol Monogr 88(4):653–671

    Article  Google Scholar 

  • Martin AP et al (2006) A modular system for trapping and mass-marking bumblebees: applications for studying food choice and foraging range. Apidologie 37:341–350

    Article  Google Scholar 

  • McFrederick QS, Lebuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol Conserv 129(3):372–382

    Article  Google Scholar 

  • McGonigle L et al (2017) A tool for selecting plants when restoring habitat for pollinators. Conserv Lett 10(1):105–111

    Article  Google Scholar 

  • Memmott J et al (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond Biol Sci 271:2605–2611

    Article  Google Scholar 

  • Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16(5):254–260

    Article  PubMed  Google Scholar 

  • Müller CB, Schmid-Hempel P (1992) Correlates of reproductive success among field colonies of Bombus lucorum: the importance of growth and parasites. Ecol Entomol 17(4):343–353

    Article  Google Scholar 

  • Müller CB, Schmid-Hempel P (1993) Exploitation of cold temperature as defence against parasitoids in bumblebees. Nature 363:65–67

    Article  Google Scholar 

  • Pechenik J (2006) Larval experience and latent effects—metamorphosis is n ota new beginning. Integr Comp Biol 46(3):323–333

    Article  PubMed  Google Scholar 

  • Pelletier L, McNeil JN (2003) The effect of food supplementation on reproductive success of bumblebee field colonies. Oikos 103:688–694

    Article  Google Scholar 

  • Persson AS, Smith HG (2011) Bumblebee colonies produce larger foragers in complex landscapes. Basic Appl Ecol 12:695–702

    Google Scholar 

  • Plowright RC, Jay SC (1977) On the size determination of bumble bee castes (Hymenoptera: Apidae). Can J Zool 55(7):1133–1138

    Article  Google Scholar 

  • Poissonnier LA et al (2015) Cold and CO2 narcosis have long-lasting and dissimilar effects on Bombus terrestris. Insectes Soc 62(3):291–298

    Article  Google Scholar 

  • Potts SG et al (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84(10):2628–2642

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org

  • Rotheray EL et al (2017) Quantifying the food requirements and effects of food stress on bumble bee colony development. J Apic Res 56(3):288–299

    Article  Google Scholar 

  • Roulston TH, Goodell K (2011) The role of resources and risks in regulating wild bee populations. Ann Rev Entomol 56:293–312

    Article  CAS  Google Scholar 

  • Roulston TH et al (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol Monogr 70(4):617–643

    Google Scholar 

  • Rundlöf M et al (2014) Late-season mass-flowering red clover increases bumble bee queen and male densities. Biol Conserv 172:138–145

    Article  Google Scholar 

  • Schellhorn NA, Gagic V, Bommarco R (2015) Time will tell: resource continuity bolsters ecosystem services. Trends Ecol, Evol

    Google Scholar 

  • Schmid-Hempel R, Schmid-Hempel P (1998) Colony performance and immunocompetence of a social insect, Bombus terrestris, in poor and variable environments. Funct Ecol 12:22–30

    Article  Google Scholar 

  • Schwarz CJ (2001) The Jolly–Seber model: more than just abundance. JABES 6:195

    Article  Google Scholar 

  • Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52(3):860–873

    Article  Google Scholar 

  • Shik J (2008) Ant colony size and the scaling of reproductive effort. Funct Ecol 22:674–681

    Article  Google Scholar 

  • Spaethe J, Weidenmüller A (2002) Size variation and foraging rate in bumblebees (Bombus terrestris). Insectes Soc 49(2):142–146

    Article  Google Scholar 

  • Spiesman BJ et al (2017) Bumble bee colony growth and reproduction depend on local flower dominance and natural habitat area in the surrounding landscape. Biol Conserv 206:217–223

    Article  Google Scholar 

  • Sutclifffe GH, Plowright RC (1988) The effects of food supply on adult size in the bumblebee Bombus terricola Kirby (Hymenoptera: Apidae). Can Entomol 120:1051–1058

    Article  Google Scholar 

  • Tustain RCR, Faulke J (1979) Effect of carbon dioxide anaesthesia on the longevity of honey bees in the laboratory. N Z J Exp Agric 7(3):327–329

    Google Scholar 

  • Vaiserman AM (2014) Early-life nutritional programming of longevity. J Dev Orig Health Dis 5(5):325–338

    Article  CAS  PubMed  Google Scholar 

  • Vaudo AD et al (2015) Bee nutrition and floral resource restoration. Curr Opin Insect Sci 10:133–141

    Article  PubMed  Google Scholar 

  • Vaudo AD et al (2018) Consistent pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and reproduction across different habitats. Ecol Evol 8(11):5765–5776

    Article  PubMed  PubMed Central  Google Scholar 

  • Westphal C et al (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965

    Article  Google Scholar 

  • Westphal C et al (2006) Foraging trip duration of bumblebees in relation to landscape-wide resource availability. Ecol Entomol 31:389–394

    Article  Google Scholar 

  • Westphal C et al (2009) Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. J Appl Ecol 46:187–193

    Article  Google Scholar 

  • Williams IH, Christian DG (1991) Observations on Phacelia tanacetifolia Bentham (Hydrophyllaceae) as a food plant for honey bees and bumble bees. J Apic Res 30(1):3–12

    Article  Google Scholar 

  • Williams BK et al (2002) Analysis and Management of Animal Populations: modeling, estimation, and decision making. Academic Press, San Diego

    Google Scholar 

  • Williams NM et al (2012) Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93(5):1049–1058

    Article  PubMed  Google Scholar 

  • Williams PH et al (2014) Bumble bees of North America. Princeton University Press, Princeton

    Google Scholar 

  • Williams NM et al (2015) Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol Appl 25(8):2119–2131

    Article  PubMed  Google Scholar 

  • Willmer PG, Finlayson K (2014) Big bees do a better job: intraspecific size variation influences pollination effectiveness. J Pollinat Ecol 14(23):244–254

    Google Scholar 

  • Wood TJ, Gibbs J, Graham KK, Isaacs R (2019) Narrow pollen diets are associated with declining Midwestern bumble bee species. Ecology 100:e02697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation (DEB1354224 to EC and DEB1354022 to NW). We thank Jim Jackson and the UC Davis Plant Sciences Division for technical support in preparing and maintaining our study site, Hedgerow Farms (Winters, CA) for donated native plant seed, and a multitude of people, including technicians and students, who provided various forms of assistance in the field and laboratory: S. Glasser, N. Dorian, C. Fagan, J. Mola, J. Drost, A. Buderi, T. Zapalac, L. Cech, M. Epperly, K. Bolte, N.Kerr, C. Nye, K. Ward. We also thank two anonymous reviewers whose comments helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NW, EC, and RM collaborated on experimental design and methodology. RM and NW collected the data. RM and EC analyzed the data. RM led the writing of the manuscript with input from NW and EC. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Rosemary L. Malfi.

Additional information

Communicated by Ingolf Steffan-Dewenter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malfi, R.L., Crone, E. & Williams, N. Demographic benefits of early season resources for bumble bee (B. vosnesenskii) colonies. Oecologia 191, 377–388 (2019). https://doi.org/10.1007/s00442-019-04472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-019-04472-3

Keywords

Navigation