Isotope values of California vole (Microtus californicus) hair relate to historical drought and land use patterns in California, USA

Abstract

Increased drought frequency and intensity and agricultural intensification have been key stressors to ecological systems over the past century. Biological proxies (e.g., pollen, tree rings) have been used to track this environmental change; however, linking these changes to the ecology of organisms remains challenging. Here, we link historical drought records to conditions of high water-stress in grassland habitats through the stable isotope analysis of California vole museum specimens (Microtus californicus). Using museum collections spanning 118-years (1891–2009), isotope values of dated hair tissues were associated with statewide drought metrics on the Palmer Drought Severity Index. We observed a positive correlation between δ15N and δ18O values and drought severity. The range in δ15N values (~ 18‰) is greater than what would be expected as a result of dietary shifts across the landscape (~ 3‰), and is likely attributed to the combined effects of physiological responses of M. californicus and isotopic shifts in plant resources with increased water-stress. Geospatial patterns in δ34S values of hair tissues reflect higher baseline isotope values in coastal habitats. However, comparably high δ34S values in the southern-most inland localities suggest sulfur fertilization of croplands and subsequent transfer to surrounding grassland habitats in 34S enriched forms. A broad δ13C range (− 28.7 to − 14.3‰) further suggests the consumption of C3 and C4 plant-based dietary proteins. As shown here, stable isotope analysis of museum collections can provide a climate and land use record based on the physiological performance and ecology of a study species in a region affected intensely by anthropogenic activities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adams RI, Hadly EA (2010) High levels of gene flow in the California vole (Microtus californicus) are consistent across spatial scales. West N Am Nat 70:296–311

    Article  Google Scholar 

  2. Adams TS, Sterner RW (2000) The effect of dietary nitrogen content on trophic level 15N enrichment. Limnol Oceanogr 45:601–607

    Article  CAS  Google Scholar 

  3. Allen-Diaz B, Bartolome JW (1999) California oak savanna. In: Anderson RC, Fralish JS, Baskin JM (eds) Savannas barrens rock outcrop plant communities of North America. Cambridge University Press, Cambridge, pp 322–342

    Google Scholar 

  4. Ambrose SH (1991) Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J Archaeol Sci 18:293–317

    Article  Google Scholar 

  5. Ambrose SH (2002) Controlled diet and climate experiments on nitrogen isotope ratios of rats. In: Ambrose SH, Katzenberg MA (eds) Biogeochemical approaches to paleodietary analysis. Springer, Berlin, pp 243–259

    Google Scholar 

  6. Amundson R, Austin AT, Schuur EA et al (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17(1):1031

    Article  CAS  Google Scholar 

  7. Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519–529

    Article  PubMed  Google Scholar 

  8. Baldocchi DD, Xu L, Kiang N (2004) How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric For Meteorol 123:13–39

    Article  Google Scholar 

  9. Bateman AS, Kelly SD (2007) Fertilizer nitrogen isotope signatures. Isot Environ Health Stud 43:237–247

    Article  CAS  Google Scholar 

  10. Batzli GO, Pitelka FA (1971) Condition and diet of cycling populations of the California vole, Microtus californicus. J Mammal 52:141–163

    Article  CAS  PubMed  Google Scholar 

  11. Blight LK, Hobson KA, Kyser TK, Arcese P (2015) Changing gull diet in a changing world: a 150-year stable isotope (δ13C, δ15N) record from feathers collected in the Pacific Northwest of North America. Glob Change Biol 21:1497–1507

    Article  Google Scholar 

  12. Bryant JD, Froelich PN (1995) A model of oxygen isotope fractionation in body water of large mammals. Geochim Cosmochim Acta 59:4523–4537

    Article  CAS  Google Scholar 

  13. Bump JK, Fox-Dobbs K, Bada JL et al (2007) Stable isotopes, ecological integration and environmental change: wolves record atmospheric carbon isotope trend better than tree rings. Proc R Soc Lond B Biol Sci 274:2471–2480

    Article  CAS  Google Scholar 

  14. Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  15. Cerling TE, Wittemyer G, Ehleringer JR et al (2009) History of animals using isotope records (HAIR): a 6-year dietary history of one family of African elephants. Proc Natl Acad Sci USA 106:8093–8100. https://doi.org/10.1073/pnas.0902192106

    Article  PubMed  Google Scholar 

  16. Chamberlain CP, Waldbauer JR, Fox-Dobbs K, Newsome SD, Koch PL, Smith DR et al (2005) Pleistocene to recent dietary shifts in California condors. Proc Natl Acad Sci USA 102:16707–16711

    Article  CAS  PubMed  Google Scholar 

  17. Chasar LC, Chanton JP, Koenig CC, Coleman FC (2005) Evaluating the effect of environmental disturbance on the trophic structure of Florida Bay, USA: multiple stable isotope analyses of contemporary and historical specimens. Limnol Oceanogr 50:1059

    Article  CAS  Google Scholar 

  18. Cheng L, Hoerling M, AghaKouchak A et al (2016) How has human-induced climate change affected California drought risk? J Clim 29:111–120

    Article  Google Scholar 

  19. Church RL (1966) Water exchanges of the California vole, Microtus californicus. Physiol Zool 39:326–340

    Article  Google Scholar 

  20. Clark JP (1984) Vole control in field crops. In: Clark DO, Marsh RE, Beadle DE (eds) Proceedings of the eleventh vertebrate pest conference. University of California, Davis, pp 5–6

    Google Scholar 

  21. Clark JP (1994) Vertebrate pest control handbook, 4th edn. Division of Plant Industry, California Department of Food and Agriculture, Sacramento (CA)

  22. Clementz MT, Koch PL (2001) Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129:461–472

    Article  PubMed  Google Scholar 

  23. Codron J, Codron D, Lee-Thorp JA et al (2005) Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J Archaeol Sci 32:1757–1772

    Article  Google Scholar 

  24. Conroy CJ, Neuwald JL (2008) Phylogeographic study of the California vole, Microtus californicus. J Mammal 89:755–767

    Article  Google Scholar 

  25. Craine JM, Nippert JB, Elmore AJ et al (2012) Timing of climate variability and grassland productivity. Proc Natl Acad Sci USA 109:3401–3405

    Article  PubMed  Google Scholar 

  26. Cryan PM, Bogan MA, Rye RO, Landis GP, Kester CL (2004) Stable H isotope analysis of bat hair as evidence for seasonal molt and long-distance migration. J Mammal 85:995–1001

    Article  Google Scholar 

  27. Cryan PM, Stricker CA, Wunder MB (2014) Continental-scale, seasonal movements of a heterothermic migratory tree bat. Ecol Appl 24:602–616

    Article  PubMed  Google Scholar 

  28. Cudworth NL, Koprowski JL (2010) Microtus californicus (Rodentia: Cricetidae). Mamm Species 42:230–243

    Article  Google Scholar 

  29. D’Antonio CM, Malmstrom C, Reynolds SA, Gerlach J (2007) Ecology of invasive non-native species in California grassland. In: Stromberg MR, Corbin JD, D’Antonio CM (eds) California grasslands: ecology and management. University of California Press, Berkeley, pp 67–83

    Google Scholar 

  30. Dale VH (1997) The relationship between land-use change and climate change. Ecol Appl 7:753–769

    Article  Google Scholar 

  31. Davis EB, Koo MS, Conroy C et al (2008) The California hotspots project: identifying regions of rapid diversification of mammals. Mol Ecol 17:120–138

    Article  CAS  PubMed  Google Scholar 

  32. De Vries FT, Liiri ME, Bjørnlund L et al (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Change 2:276–280

    Article  Google Scholar 

  33. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  34. Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased drought risk in California. Proc Natl Acad Sci USA 112:3931–3936

    Article  CAS  PubMed  Google Scholar 

  35. DiVittorio CT, Corbin JD, D’Antonio CM (2007) Spatial and temporal patterns of seed dispersal: an important determinant of grassland invasion. Ecol Appl 17:311–316

    Article  PubMed  Google Scholar 

  36. Ecke DH, Kinney AR (1956) Aging meadow mice, Microtus californicus by observation of molt progression. J Mammal 37:249–254

    Article  Google Scholar 

  37. Ehleringer JR, Cerling TE, Flanagan LB (2001) Global change and the linkages between physiological ecology and ecosystem ecology. In: Press MC, Huntly NJ, Levin S (eds) Ecology: achievement and challenge. Blackwell Science Press, New York, pp 115–138

    Google Scholar 

  38. Ehleringer JR, Bowen GJ, Chesson LA et al (2008) Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc Natl Acad Sci USA 105:2788–2793

    Article  PubMed  Google Scholar 

  39. Faunt CC, Sneed M, Traum J, Brandt JT (2016) Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol J 24:675–684

    Article  Google Scholar 

  40. Fernández-Salvador R, García-Perea R, Ventura J (2005) Effect of climatic fluctuations on body mass of a Mediterranean vole, Microtus cabrerae. Mamm Biol-Z Für Säugetierkd 70:73–83

    Article  Google Scholar 

  41. Fox-Dobbs K, Nelson A, Koch PL, Leonard JA (2012) Faunal isotope records reveal trophic and nutrient dynamics in twentieth century Yellowstone grasslands. Biol Lett 8:838–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fry B (2006) Mixing. In: Slobodien J, Avouris A (eds) Stable isotope ecology. Springer Science + Business Media, LLC, New York, pp 119–176

    Google Scholar 

  43. Fry B, Silva SR, Kendall C, Anderson RK (2002) Oxygen isotope corrections for online δ34S analysis. Rapid Commun Mass Spectrom 16(9):854–858

    Article  CAS  PubMed  Google Scholar 

  44. Gilgen AK, Buchmann N (2009) Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosciences 6:2525–2539

    Article  Google Scholar 

  45. Gill AE (1984) Partial reproductive isolation of subspecies of the California vole, Microtus californicus. Genetica 52:105–117

    Article  Google Scholar 

  46. Girard J, Baril A, Mineau P, Fahrig L (2011) Carbon and nitrogen stable isotope ratios differ among invertebrates from field crops, forage crops, and non-cropped land uses. Ecoscience 18:98–109

    Article  Google Scholar 

  47. Greenwald GS (1957) Reproduction in a coastal California population of the field mouse Microtus californicus. University of California Press, Berkeley

    Google Scholar 

  48. Haines M, Fishback P, Rhode P (2015) United States Agriculture Data, 1840–2010 (no. ICPSR35206-v2). Inter-university Consortium for Political and Social Research [distributor], Ann Arbor, MI. https://doi.org/10.3886/ICPSR35206.v2

  49. Handley LL, Austin AT, Stewart GR et al (1999) The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Funct Plant Biol 26:185–199

    Article  Google Scholar 

  50. Heaton TH, Vogel JC, von La Chevallerie G, Collett G (1986) Climatic influence on the isotopic composition of bone nitrogen. Nature 322:822–823

    Article  CAS  Google Scholar 

  51. Heckathorn SA, DeLucia EH, Zielinski RE (1997) The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiol Plant 101:173–182

    Article  CAS  Google Scholar 

  52. Heim RR Jr (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83:1149

    Article  Google Scholar 

  53. Helliker BR, Ehleringer JR (2002) Differential 18O enrichment of leaf cellulose in C3 versus C4 grasses. Funct Plant Biol 29:435–442

    Article  CAS  Google Scholar 

  54. Heske EJ, Lidicker WZ Jr, Wilson DE, Ruff S (1999) California vole: Microtus californicus. In: Wilson DE, Ruff S (eds) The Smithsonian book of North American mammals. Smithsonian Institution Press, Washington DC, pp 626–628

    Google Scholar 

  55. Hinckley E-LS, Matson PA (2011) Transformations, transport, and potential unintended consequences of high sulfur inputs to Napa Valley vineyards. Proc Natl Acad Sci USA 108:14005–14010

    Article  PubMed  Google Scholar 

  56. Hinckley E-LS, Kendall C, Loague K (2008) Not all water becomes wine: sulfur inputs as an opportune tracer of hydrochemical losses from vineyards. Water Resour Res 44(7):W00401

    Article  CAS  Google Scholar 

  57. Hobson KA (2005) Using stable isotopes to trace long-distance dispersal in birds and other taxa. Divers Distrib 11:157–164

    Article  Google Scholar 

  58. Hobson KA, Alisauskas RT, Clark RG (1993) Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. Condor 95(2):388–394

    Article  Google Scholar 

  59. Hobson KA, Atwell L, Wassenaar LI (1999) Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. Proc Natl Acad Sci USA 96:8003–8006

    Article  CAS  PubMed  Google Scholar 

  60. Hobson KA, Bowen GJ, Wassenaar LI et al (2004) Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds. Oecologia 141:477–488

    Article  PubMed  Google Scholar 

  61. Horak KE, Volker SF, Campton CM (2015) Increased diphacinone and chlorophacinone metabolism in previously exposed wild caught voles, Microtus californicus. Crop Prot 78:35–39

    Article  CAS  Google Scholar 

  62. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531

    Article  CAS  PubMed  Google Scholar 

  63. Koehler AE, Marsh RE, Tunberg AD, Howard WE (1989) Food habits of California voles, Microtus californicus, in artichokes, Cynara scolymus. Crop Prot 8:114–117

    Article  Google Scholar 

  64. Kohn MJ (1996) Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim Cosmochim Acta 60:4811–4829

    Article  CAS  Google Scholar 

  65. Krebs CJ (1966) Demographic changes in fluctuating populations of Microtus californicus. Ecol Monogr 36:239–273

    Article  Google Scholar 

  66. Lidicker WZ (1973) Regulation of numbers in an island population of the California vole, a problem in community dynamics. Ecol Monogr 43:271–302

    Article  Google Scholar 

  67. Lidicker WZ (1976) Experimental manipulation of the timing of reproduction in the California vole. Res Popul Ecol 18:14–27

    Article  Google Scholar 

  68. Lidicker WZ (2015) Genetic and spatial structuring of the California vole (Microtus californicus) through a multiannual density peak and decline. J Mammal 96:1142–1151

    Article  Google Scholar 

  69. Lister AM, Group CCR (2011) Natural history collections as sources of long-term datasets. Trends Ecol Evol 26:153–154

    Article  PubMed  Google Scholar 

  70. Lott CA, Meehan TD, Heath JA (2003) Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: influence of marine prey base. Oecologia 134:505–510

    Article  PubMed  Google Scholar 

  71. Ma JY, Sun W, Liu XN, Chen FH (2012) Variation in the stable carbon and nitrogen isotope composition of plants and soil along a precipitation gradient in northern China. PLoS One 7:e51894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. MacAvoy SE, Arneson LS, Bassett E (2006) Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals. Oecologia 150:190–201

    Article  PubMed  Google Scholar 

  73. McGuire JL (2010) Geometric morphometrics of vole (Microtus californicus) dentition as a new paleoclimate proxy: shape change along geographic and climatic clines. Quat Int 212:198–205

    Article  Google Scholar 

  74. Miller JF, Millar JS, Longstaffe FJ (2008) C and N isotope tissue–diet discrimination and turnover rates in deer mice, Peromyscus maniculatus. Can J Zool 86:685–691

    Article  CAS  Google Scholar 

  75. Mooney H, Zavaleta E (2016) Ecosystems of California. University of California Press, Berkeley

    Google Scholar 

  76. Murphy BP, Bowman DM (2009) The carbon and nitrogen isotope composition of Australian grasses in relation to climate. Funct Ecol 23:1040–1049

    Article  Google Scholar 

  77. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  78. Navarro D (2015) Learning statistics with R: A tutorial for psychology students and other beginners. University of Adelaide, Adelaide

    Google Scholar 

  79. Nelson RJ, Dark J, Zucker I (1983) Influence of photoperiod, nutrition and water availability on reproduction of male California voles (Microtus californicus). J Reprod Fertil 69:473–477

    Article  CAS  PubMed  Google Scholar 

  80. Nelson RJ, Frank D, Bennett SA, Carter CS (1989) Simulated drought influences reproduction in male prairie voles. Physiol Behav 46:849–852

    Article  CAS  PubMed  Google Scholar 

  81. Newsome SD, Fogel ML, Kelly L, del Rio CM (2011) Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct Ecol 25:1051–1062

    Article  Google Scholar 

  82. Newsome SD, Wolf N, Peters J, Fogel ML (2014) Amino acid δ13C analysis shows flexibility in the routing of dietary protein and lipids to the tissue of an omnivore. Integr Comp Biol 54:890–902

    Article  CAS  PubMed  Google Scholar 

  83. Palmer WC (1965) Meteorological drought. Department of Commerce, Washington, DC

    Google Scholar 

  84. Peale TR (1858) United States exploring expedition during the years 1838, 1839, 1840, 1841, 1842, under the command of Charles Wilkes, U.S.N. In: Mammalia and ornithology, vol 8. C. Sherman and Son, Philadelphia

  85. Pearson OP (1960) Habits of Microtus californicus revealed by automatic photographic recorders. Ecol Monogr 30:231–250

    Article  Google Scholar 

  86. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18(1):293–320

    Article  Google Scholar 

  87. Podlesak DW, Torregrossa A-M, Ehleringer JR et al (2008) Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal. Geochim Cosmochim Acta 72:19–35

    Article  CAS  Google Scholar 

  88. R Development Core Team (2013) R: a language and environment for statistical computing. Vienna, Austria. http://www.R-project.org/. Accessed 5 Jan 2016

  89. Richards MP, Fuller BT, Sponheimer M et al (2003) Sulphur isotopes in palaeodietary studies: a review and results from a controlled feeding experiment. Int J Osteoarchaeol 13:37–45

    Article  Google Scholar 

  90. Roth JD, Hobson KA (2000) Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: implications for dietary reconstruction. Can J Zool Rev Can Zool 78:848–852

    Article  Google Scholar 

  91. Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19:256–263

    Article  Google Scholar 

  92. Sare DT, Millar JS, Longstaffe FJ (2005) Tracing dietary protein in red-backed voles (Clethrionomys gapperi) using stable isotopes of N and C. Can J Zool 83:717–725

    Article  CAS  Google Scholar 

  93. Seabloom EW, Harpole WS, Reichman OJ, Tilman D (2003) Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc Natl Acad Sci USA 100:13384–13389

    Article  CAS  PubMed  Google Scholar 

  94. Silver WL, Ryals R, Eviner V (2010) Soil carbon pools in California’s annual grassland ecosystems. Rangel Ecol Manag 63:128–136

    Article  Google Scholar 

  95. Smiley TM, Cotton JM, Badgley C, Cerling TE (2015) Small-mammal isotope ecology tracks climate and vegetation gradients across western North America. Oikos 125:1100–1109

    Article  CAS  Google Scholar 

  96. Speiss A-N (2014) qpcR: modelling and analysis of real-time PCR data. R package version 1.3-9. http://CRAN.R-project.org/package=qpcR. Accessed 5 Jan 2016

  97. Sponheimer M, Robinson T, Ayliffe L et al (2003a) Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled feeding study. Int J Osteoarchaeol 13:80–87

    Article  Google Scholar 

  98. Sponheimer M, Robinson T, Ayliffe L et al (2003b) An experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores. Can J Zool Rev Can Zool 81:871–876

    Article  CAS  Google Scholar 

  99. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J et al (2013). Climate change 2013: the physical science basis. Intergovernmental panel on climate change, working group I contribution to the IPCC fifth assessment report (AR5), New York

  100. Stromberg MR, Corbin JD, D’Antonio CM (2007) California grasslands: ecology and management. University of California Press, Berkeley

    Google Scholar 

  101. Swap RJ, Aranibar JN, Dowty PR et al (2004) Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Glob Change Biol 10:350–358

    Article  Google Scholar 

  102. Thompson DR, Furness RW, Monteiro LR (1998) Seabirds as biomonitors of mercury inputs to epipelagic and mesopelagic marine food chains. Sci Total Environ 213:299–305

    Article  CAS  Google Scholar 

  103. U.S. Bureau of the Census (1975) Historical statistics of the United States, colonial times to 1970, Bicentennial edition, part 1. Washington, D.C

  104. USDA National Agricultural Statistics Service (2012a) 2012 Census of Agriculture: State Level Data, State of California. https://www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_1_State_Level/California. Accessed 5 Jan 2016

  105. USDA National Agriculture Statistics Service (2012b) 2012 Census of Agriculture, State of California, county level data. http://www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_2_County_Level/California/. Accessed 5 Jan 2016

  106. Vachon RW, Welker JM, White JWC, Vaughn BH (2010) Monthly precipitation isoscapes (δ18O) of the United States: connections with surface temperatures, moisture source conditions, and air mass trajectories. J Geophys Res Atmos 115:D21126

    Article  CAS  Google Scholar 

  107. Van Loon AF, Gleeson T et al (2016) Drought in the anthropocene. Nat Geosci 9:89–91

    Article  Google Scholar 

  108. Vitòria L, Otero N, Soler A, Canals À (2004) Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environ Sci Technol 38:3254–3262

    Article  CAS  PubMed  Google Scholar 

  109. Vo A-TE, Bank MS, Shine JP, Edwards SV (2011) Temporal increase in organic mercury in an endangered pelagic seabird assessed by century-old museum specimens. Proc Natl Acad Sci USA 108:7466–7471

    Article  PubMed  Google Scholar 

  110. West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21:408–414

    Article  Google Scholar 

  111. Whipple AA, Grossinger RM, Davis FW (2011) Shifting baselines in a California oak savanna: nineteenth century data to inform restoration scenarios. Restor Ecol 19:88–101

    Article  Google Scholar 

  112. White AJ, Poulin RG, Wissel B et al (2012) Agricultural land use alters trophic status and population density of deer mice (Peromyscus maniculatus) on the North American Great Plains. Can J Zool 90:868–874

    Article  CAS  Google Scholar 

  113. Zazzo A, Monahan FJ, Moloney AP et al (2011) Sulphur isotopes in animal hair track distance to sea. Rapid Commun Mass Spectrom 25:2371–2378

    Article  CAS  PubMed  Google Scholar 

  114. Zhao FJ, Knights JS, Hu ZY, McGrath SP (2003) Stable S isotope ratio indicates long-term changes in S deposition in the Broadbalk experiment since 1845. J Environ Qual 32:33–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following museums and curators for access to specimen collections: National Museum of Natural History (S. Peurach), Cornell University Museum of Vertebrates (C. Dardia), University of California Berkeley Museum of Vertebrate Zoology (C. Conroy), University of California Santa Barbara Cheadle Center for Biodiversity and Ecological Restoration (M. Beas-Moix, H. Young), University of California Los Angeles Donald R. Dickey Bird and Mammal Collection (K. Molina), Occidental College Moore Laboratory of Zoology (J. McCormack), University of Michigan Museum of Zoology (P. Tucker, C. Thompson), Los Angeles County Museum of Natural History (J. Dines), and the Santa Barbara Museum of Natural History (P. Collins). We thank J. Ifft (Cornell University, School of Applied Economics and Management) for guidance in obtaining historical agricultural data. We also thank the Cornell Stable Isotope Laboratory (K. Sparks, J. Pollak) for the isotopic analysis of samples.

Author information

Affiliations

Authors

Contributions

JMC designed the study, collected specimen samples, analyzed output data, and wrote the first draft of the manuscript; JBS assisted with study design, coordinating access to museum collections, and contributed substantially to manuscript revisions; JPS assisted with study design, provided financial and facility support for stable isotope analyses, and contributed substantially to manuscript revisions.

Corresponding author

Correspondence to Jasmine M. Crumsey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.

Additional information

Communicated by Michael Sheriff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 672 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crumsey, J.M., Searle, J.B. & Sparks, J.P. Isotope values of California vole (Microtus californicus) hair relate to historical drought and land use patterns in California, USA. Oecologia 190, 769–781 (2019). https://doi.org/10.1007/s00442-019-04457-2

Download citation

Keywords

  • Microtus californicus
  • Grassland
  • Stable isotope analysis
  • Physiology
  • Drought