Skip to main content
Log in

Scaling of stem diameter and height allometry in 14 neotropical palm species of different forest strata

  • Physiological ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Tropical palms reach tree-like heights without a vascular cambium through sustained cell expansion and lignification of primary tissues, but only a fraction of palms have been explored in their allometric relationships. Here, our main question was to determine how palms depart from the traditional mechanical models developed for trees and how they approach the theoretical buckling limit. We analyzed the stem allometry of 1603 palms of 14 species from different strata at 10 sites in Costa Rica and Peru. We measured their fit to the stress, elastic, and geometric similarity models, and their position relative to the maximum theoretical buckling limit calculated for trees. We evaluated the slope of the linear and logarithmic regressions between stem diameter and height using logarithmic least squares, and standardized major axis regression (SMA), expecting segregation according to canopy position and geographic location. Seventeen out of 19 statistically significant models had SMA slopes > 1, and 11 had SMA slopes ≥ 2, departing from traditional mechanical models developed for trees. Many species varied their allometry relative to geographic location. Canopy palms showed the highest regression fit but had less steep slopes than understory and subcanopy species. Subcanopy and understory species were more underbuilt than canopy palms, increasing height faster than diameter. Some of the tallest canopy palms surpassed the maximum buckling limit whereas subcanopy and understory species were consistently below the buckling limit of record-size trees. Palm stem allometry changed in response to environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez-Clare S, Mack MC, Brooks M (2013) A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94:1540–1551

    Article  CAS  PubMed  Google Scholar 

  • Alves LF, Martins FR, Santos FAM (2004) Allometry of a neotropical palm, Euterpe edulis Mart. Acta Bot Bras 18:369–374

    Article  Google Scholar 

  • Andersen KM, Endara MJ, Turner BL, Dalling JW (2012) Trait-based community assembly of understorey palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia 168:519–531

    Article  PubMed  Google Scholar 

  • Avalos G, Otárola MF (2010) Allometry and stilt root structure of the neotropical palm Euterpe precatoria (Arecaceae) across sites and successional stages. Am J Bot 97:388–394

    Article  PubMed  Google Scholar 

  • Avalos G, Sylvester O (2010) Allometric estimation of total leaf area in the neotropical palm Euterpe oleracea at La Selva, Costa Rica. Trees Struct Funct 24:969–974

    Article  Google Scholar 

  • Avalos G, Salazar D, Araya AL (2005) Stilt root structure in the neotropical palms Iriartea deltoidea and Socratea exorrhiza. Biotropica 37:44–53

    Article  Google Scholar 

  • Cambronero M, Avalos G, Alvarez-Vergnani C (2018) Variation in the carbon fraction of seven neotropical palm species of different forest strata. Palms 62:25–34

    Google Scholar 

  • Clark DB, Clark DA (2000) Landscape-scale variation in forest structure and biomass in a tropical rain forest. For Ecol Manag 137:185–198

    Article  Google Scholar 

  • Claussen JW, Maycock CR (1995) Stem allometry in a North Queensland tropical rainforest. Biotropica 27:21–426

    Article  Google Scholar 

  • Condit R (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer, Berlin

    Book  Google Scholar 

  • Condit R, Engelbrecht BM, Pino D, Pérez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc Natl Acad Sci USA 110:5064–5068

    Article  PubMed  Google Scholar 

  • Costa FR, Guillaumet JL, Lima AP, Pereira OS (2009) Gradients within gradients: the mesoscale distribution patterns of palms in a central Amazonian forest. J Veg Sci 20:69–78

    Article  Google Scholar 

  • Da Silva F, Suwa R, Kajimoto T, Ishizuka M, Higuchi N, Kunert N (2015) Allometric equations for estimating biomass of Euterpe precatoria, the most abundant palm species in the Amazon. Forests 6:450–463

    Article  Google Scholar 

  • Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera palmarum. Evolution and classification of the palms, 2nd edn. Royal Botanic Gardens, Kew

    Google Scholar 

  • Eiserhardt WL, Svenning JC, Kissling WD, Balslev H (2011) Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Ann Bot Lond 108:1391–1416

    Article  Google Scholar 

  • Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K et al (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106

    Article  Google Scholar 

  • Gatti MG, Campanello PI, Goldstein G (2011) Growth and leaf production in the tropical palm Euterpe edulis: light conditions versus developmental constraints. Flora 206:742–748

    Article  Google Scholar 

  • Goodman RC, Phillips OL, del Castillo Torres D, Freitas L, Cortese ST, Monteagudo A, Baker TR (2013) Amazon palm biomass and allometry. For Ecol Manag 310:994–1004

    Article  Google Scholar 

  • Grayum MH (2003) Arecaceae. In: Hammel BE, Grayum MH, Herrera C, Zamora N (eds) Manual de plantas de Costa Rica, vol III. Missouri Botanical Garden, St. Louis, pp 201–293

    Google Scholar 

  • Henderson AJ (2011) A revision of Geonoma (Arecaceae). Phytotaxa 17:1–271

    Article  Google Scholar 

  • Kahn F, De Granville JJ (2012) Palms in forest ecosystems of Amazonia. Springer, Berlin

    Google Scholar 

  • Killmann W (1983) Some physical properties of the coconut palm stem. Wood Sci Technol 17:167–185

    Article  Google Scholar 

  • King D (1981) Tree dimensions: maximizing the rate of height growth in dense stands. Oecologia 51:351–356

    Article  PubMed  Google Scholar 

  • King DA (1996) Allometry and life history of tropical trees. J Trop Ecol 12:25–44

    Article  Google Scholar 

  • King DA (2011) Size-related changes in tree proportions and their potential influence on the course of height growth. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function, vol IV. Springer, Dordrecht, pp 165–191

    Chapter  Google Scholar 

  • King DA, Davies SJ, Tan S, Nur Supardi M (2009) Trees approach gravitational limits to height in tall lowland forests of Malaysia. Funct Ecol 23:284–291

    Article  Google Scholar 

  • Kohyama T, Suzuki E, Partomihardjo T, Yamada T, Kubo T (2003) Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. J Ecol 91:797–806

    Article  Google Scholar 

  • Legendre P (2014) lmodel2: model II regression. R package version 1.7-2

  • Lieberman M, Lieberman D, Vandermeer JH (1988) Age-size relationships and growth behavior of the palm Welfia georgii. Biotropica 20:270–273

    Article  Google Scholar 

  • McMahon TA (1973) Size and shape in biology. Science 179:1201–1204

    Article  CAS  PubMed  Google Scholar 

  • McMahon TA, Kronauer RE (1976) Tree structures: deducing the principle of mechanical design. J Theor Biol 59:443–466

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ (1993) The scaling of plant height: a comparison among major plant clades and anatomical grades. Ann Bot Lond 72:165–172

    Article  Google Scholar 

  • Niklas KJ (1994) Plant allometry: the scaling of form and process. University of Chicago, Chicago

    Google Scholar 

  • Niklas KJ (1995) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot Lond 75:217–227

    Article  Google Scholar 

  • Ninazunta M, Queenborough SA, Hernández C, Valencia R (2016) Growth strategies of the arborescent palm Iriartea deltoidea in a western Amazonian forest. Bot J Linn Soc 182:411–424

    Article  Google Scholar 

  • O’Brien ST, Hubbell SP, Spiro P, Condit R, Foster RB (1995) Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology 76:1926–1939

    Article  Google Scholar 

  • Osunkoya OO, Omar-Ali K, Amit N, Dayan J, Daud DS, Sheng TK (2007) Comparative height–crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo. Am J Bot 94:1951–1962

    Article  PubMed  Google Scholar 

  • Otárola MF, Avalos G (2014) Demographic variation across successional stages and their effects on the population dynamics of the neotropical palm Euterpe precatoria. Am J Bot 101:1023–1028

    Article  PubMed  Google Scholar 

  • Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87:1289–1301

    Article  PubMed  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rich PM (1986) Mechanical architecture of arborescent rain forest palms. Palms 30:117–131

    Google Scholar 

  • Rich PM (1987a) Developmental anatomy of the stem of Welfia georgii, Iriartea gigantea, and other arborescent palms: implications for mechanical support. Am J Bot 74:792–802

    Article  Google Scholar 

  • Rich PM (1987b) Mechanical structure of the stem of arborescent palms. Bot Gaz 148:42–50

    Article  Google Scholar 

  • Rich PM, Helenurm K, Kearns D, Morse SR, Palmer MW, Short L (1986) Height and stem diameter relationships for dicotyledonous trees and arborescent palms of Costa Rican tropical wet forest. Bull Torrey Bot Club 113:241–246

    Article  Google Scholar 

  • Schoute JC (1912) Über das dickenwachstum der palmen. Ann Jard Bot Buitenzorg 11:1–209

    Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Article  Google Scholar 

  • Sposito TC, Santos FA (2001) Scaling of stem and crown in eight Cecropia (Cecropiaceae) species of Brazil. Am J Bot 88:939–949

    Article  CAS  PubMed  Google Scholar 

  • Sterck F, Bongers F (1998) Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am J Bot 85:266

    Article  CAS  PubMed  Google Scholar 

  • Svenning JC (2001) On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot Rev 67:1–53

    Article  Google Scholar 

  • Sylvester O, Avalos G (2013) Influence of light conditions on the allometry and growth of the understorey palm Geonoma undata subsp. edulis (Arecaceae) of neotropical cloud forests. Am J Bot 100:2357–2363

    Article  PubMed  Google Scholar 

  • Tomlinson PB (1979) Systematics and ecology of the Palmae. Annu Rev Ecol Syst 10:85–107

    Article  Google Scholar 

  • Tomlinson PB (1990) The structural biology of palms. Oxford University, New York

    Google Scholar 

  • Tomlinson PB (2006) The uniqueness of palms. Bot J Linn Soc 151:5–14

    Article  Google Scholar 

  • Tomlinson PB, Huggett BA (2012) Cell longevity and sustained primary growth in palm stems. Am J Bot 99:1891–1902

    Article  PubMed  Google Scholar 

  • Tomlinson PB, Horn JW, Fisher JB (2011) The anatomy of palms. Oxford University, New York

    Book  Google Scholar 

  • Waterhouse JT, Quinn CJ (1978) Growth patterns in the stem of the palm Archontophoenix cunninghamiana. Bot J Linn Soc 77:73–93

    Article  Google Scholar 

Download references

Acknowledgements

We thank the students and staff of The School for Field Studies for their help during field work, the staff of La Selva, Santa Elena, Tirimbina, El Rodeo, and Los Amigos for facilitating research at their field stations. Two anonymous reviewers provided key feedback that improved the original manuscript. This research was supported by the Directorate of Research of the University of Costa Rica Project number 111-A3-129, the International Palm Society, the Organization for Tropical Studies, Tirimbina Biological Reserve, IdeaWild, and The School for Field Studies. Alexandra Donahue corrected the final text.

Author information

Authors and Affiliations

Authors

Contributions

GA conceived, designed, implemented the study and wrote the manuscript. MG, LDR, MFO, MC, CAV, OS, and GR edited the ms and contributed data. GA analyzed the results.

Corresponding author

Correspondence to Gerardo Avalos.

Additional information

Communicated by Fernando Valladares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avalos, G., Gei, M., Ríos, L.D. et al. Scaling of stem diameter and height allometry in 14 neotropical palm species of different forest strata. Oecologia 190, 757–767 (2019). https://doi.org/10.1007/s00442-019-04452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-019-04452-7

Keywords

Navigation