The relative importance of plant-soil feedbacks for plant-species performance increases with decreasing intensity of herbivory

Abstract

Under natural conditions, aboveground herbivory and plant-soil feedbacks (PSFs) are omnipresent interactions strongly affecting individual plant performance. While recent research revealed that aboveground insect herbivory generally impacts the outcome of PSFs, no study tested to what extent the intensity of herbivory affects the outcome. This, however, is essential to estimate the contribution of PSFs to plant performance under natural conditions in the field. Here, we tested PSF effects both with and without exposure to aboveground herbivory for four common grass species in nine grasslands that formed a gradient of aboveground invertebrate herbivory. Without aboveground herbivores, PSFs for each of the four grass species were similar in each of the nine grasslands—both in direction and in magnitude. In the presence of herbivores, however, the PSFs differed from those measured under herbivory exclusion, and depended on the intensity of herbivory. At low levels of herbivory, PSFs were similar in the presence and absence of herbivores, but differed at high herbivory levels. While PSFs without herbivores remained similar along the gradient of herbivory intensity, increasing herbivory intensity mostly resulted in neutral PSFs in the presence of herbivores. This suggests that the relative importance of PSFs for plant-species performance in grassland communities decreases with increasing intensity of herbivory. Hence, PSFs might be more important for plant performance in ecosystems with low herbivore pressure than in ecosystems with large impacts of insect herbivores.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aarssen LW (2015) Body size and fitness in plants: revisiting the selection consequences of competition. Perspect Plant Ecol Evol Syst 17:236–242. https://doi.org/10.1016/j.ppees.2015.02.004

    Article  Google Scholar 

  2. Adesemoye AO, Tobert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15 N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58. https://doi.org/10.1016/j.apsoil.2010.06.010

    Article  Google Scholar 

  3. Baltensperger AA, Schank SC, Smith RL, Littell RC, Bouton JH, Dudeck AE (1978) Effect of inoculation with azopirillum and azotobacter on turf-type Bermuda genotypes. Crop Sci 18:1043–1045. https://doi.org/10.2135/cropsci1978.0011183x010800180035x

    Article  Google Scholar 

  4. Baxendale C, Orwin KH, Poly F, Pommier T, Bardgett RD (2014) Are plant–soil feedback responses explained by plant traits? N Phytol 204:408–423. https://doi.org/10.1111/nph.12915

    Article  Google Scholar 

  5. Bazzaz A (1996) Plants in changing environments: linking physiological, population and community ecology. Cambridge University Press, Cambridge

    Google Scholar 

  6. Behmer ST (2009) Insect herbivore nutrient regulation. Annu Rev Entomol 54:165–187. https://doi.org/10.1146/annurev.ento.54.110807.090537

    Article  CAS  Google Scholar 

  7. Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman & Hall, New York, p 312

  8. Berner LT, Law BE (2016) Plant traits, productivity, biomass and soil properties from forest sites in the Pacific Northwest, 1999–2014. Sci Data 3:160002. https://doi.org/10.1038/sdata.2016.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berner D, Blanckenhorn WU, Körner C (2005) Grasshoppers cope with host quality by compensatory feeding and food selection: N limitation challenged. Oikos 111:525–533. https://doi.org/10.1111/j.1600-0706.2005.14144.x

    Article  Google Scholar 

  10. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573. https://doi.org/10.2307/2960528

    Article  Google Scholar 

  11. Bever JD, Mangan SA, Alexander HM (2015) Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst 46:305–325. https://doi.org/10.1146/annurev-ecolsys-112414-054306

    Article  Google Scholar 

  12. Bezemer TM, van der Putten WH, Martens H, van de Voorde TFJ, Mulder PPJ, Kostenko O (2013) Above- and below-ground herbivory effects on below-ground plant-fungus interactions and plant-soil feedback responses. J Ecol 101:325–333. https://doi.org/10.1111/1365-2745.12045

    Article  CAS  Google Scholar 

  13. Blüthgen N, Dormann CF, Prati D, Klaus VH, Kleinebecker T, Hölzel N, Alt F, Boch S, Gockel S, Hemp A, Müller J, Nieschulze J, Renner SC, Schöning I, Schumacher U, Socher SA, Wells K, Birkhofer K, Buscot F, Oelmann Y, Rothenwöhrer C, Scherber C, Tscharntke T, Weiner CN, Fischer M, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220. https://doi.org/10.1016/j.baae.2012.04.001

    Article  Google Scholar 

  14. Borgström P, Strengbom J, Viketoft M, Bommarco R (2016) Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect. PeerJ. https://doi.org/10.7717/peerj.1867

    Article  PubMed  PubMed Central  Google Scholar 

  15. Börschig C, Klein A-M, Kraus J (2014) Effects of grassland management, endophytic fungi and predators on aphid abundance in two distinct regions. J Plant Ecol 7:490–498. https://doi.org/10.1093/jpe/rtt047

    Article  Google Scholar 

  16. Brandt AJ, del Pino GA, Burns JH (2014) Experimental protocol for manipulating plant-induced soil heterogeneity. JoVE 85:e51580. https://doi.org/10.3791/51580

    CAS  Article  Google Scholar 

  17. Branson DH, Sword GA (2009) Grasshopper herbivory affects native plant diversity and abundance in a grassland dominated by the exotic grass Agropyron cristatum. Restor Ecol 17:89–96. https://doi.org/10.1111/j.1526-100x.2007.00343.x

    Article  Google Scholar 

  18. Brinkman EP, van der Putten WH, Bakker E-J, Verhoeven KJF (2010) Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. J Ecol 98:1063–1073. https://doi.org/10.1111/j.1365-2745.2010.01695.x

    Article  Google Scholar 

  19. Cahill JF Jr, Cale JA, Karst J, Bao T, Pec GJ, Erbilgin N (2017) No silver bullet: different soil handling techniques are useful for different research questions, exhibit differential type I and II error rates, and are sensitive to sampling intensity. N Phytol 216:11–14. https://doi.org/10.1111/nph.14141

    Article  Google Scholar 

  20. Cebrian J, Lartigue J (2004) Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol Monogr 74:237–259. https://doi.org/10.1890/03-4019

    Article  Google Scholar 

  21. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366. https://doi.org/10.1146/annurev.ecolsys.31.1.343

    Article  Google Scholar 

  22. Chisté MN, Mody K, Gossner MM, Simons NK, Köhler G, Weisser WW, Blüthgen N (2016) Losers, winners, and opportunists: how grassland land-use intensity affects orthopteran communities. Ecosphere 7(11):e01545. https://doi.org/10.1002/ecs2.1545

    Article  Google Scholar 

  23. Cornelissen JHC, Lavorel S, Granier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurements of plant functional traits worldwide. Aust J Bot 51:335–380. https://doi.org/10.1071/BT02124

    Article  Google Scholar 

  24. Cortois R, Schröder-Georgi T, Weigelt A, van der Putten WH, de Deyn G (2016) Plant-soil feedbacks: role of plant functional group and plant traits. J Ecol 104:1608–1617. https://doi.org/10.1111/1365-2745.12643

    Article  Google Scholar 

  25. Crawley MJ (1989) Insect herbivores and plant population dynamics. Annu Rev Entomol 34:531–564. https://doi.org/10.1146/annurev.en.34.010189.002531

    Article  Google Scholar 

  26. DeLong JR, Fry EL, Veen GF, Kardol P (2019) Why are plant-soil feedbacks so unpredictable, and what to do about it? Funct Ecol 33:118–128. https://doi.org/10.1111/1365-2435.13232

    Article  Google Scholar 

  27. Djonova E, Petkova G, Stancheva I, Geneva M, Michovsky T (2016) Repsonse of pasture grasses to inoculation with mycorrhizal fungi and N-fixing bacteria. BJSS 1:64–77

    Google Scholar 

  28. Egerov E, Gossner MM, Meyer ST, Weisser WW, Brändle M (2017) Does plant phylogenetic diversity increase invertebrate herbivory in managed grasslands? Basic Appl Ecol 20:40–50. https://doi.org/10.1016/j.baae.2017.03.004

    Article  Google Scholar 

  29. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl Ecol 11:473–485. https://doi.org/10.1016/j.baae.2010.07.009

    Article  Google Scholar 

  30. Gossner MM, Weisser WW, Meyer ST (2014) Invertebrate herbivory decreases along a gradient of increasing land-use intensity in German grasslands. Basic Appl Ecol 15:347–352. https://doi.org/10.1016/j.baae.2014.03.003

    Article  Google Scholar 

  31. Gundale MJ, Wardle DA, Kardol P, Nilsson MC (2019) Comparison of plant-soil feedback experimental approaches for testing soil biotic interactions among ecosystems. N Phytol 221:557–587. https://doi.org/10.1111/nph.15367

    Article  Google Scholar 

  32. Heinze J, Joshi J (2018) Plant-soil feedback effects can be masked by aboveground herbivory under natural field conditions. Oecologia 186:235–246. https://doi.org/10.1007/s00442-017-3997-y

    Article  PubMed  Google Scholar 

  33. Heinze J, Bergmann J, Rillig MC, Joshi J (2015a) Negative biotic soil-effects enhance biodiversity by restricting potentially dominant plant species in grasslands. Perspect Plant Ecol Evol Syst 17:227–235. https://doi.org/10.1016/j.ppees.2015.03.002

    Article  Google Scholar 

  34. Heinze J, Werner T, Weber E, Rillig MC, Joshi J (2015b) Soil biota effects on local abundances of three grass species along a land-use gradient. Oecologia 179:249–259. https://doi.org/10.1007/s00442-015-3336-0

    Article  CAS  PubMed  Google Scholar 

  35. Heinze J, Sitte M, Schindhelm A, Wright J, Joshi J (2016) Plant-soil feedbacks: a comparative study on the relative importance of soil-feedbacks in the greenhouse vs. field. Oecologia 181:559–569. https://doi.org/10.1007/s00442-016-3591-8

    Article  PubMed  Google Scholar 

  36. Heinze J, Gensch S, Weber E, Joshi J (2017) Soil temperature modifies effects of soil biota on plant growth. J Plant Ecol 10:808–821. https://doi.org/10.1093/jpe/rtw097

    Article  Google Scholar 

  37. Huberty AF, Denno RF (2006) Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent fife-history strategies. Oecologia 149:444–455. https://doi.org/10.1007/s00442-006-0462-8

    Article  PubMed  Google Scholar 

  38. Hulme PE (1996) Herbivores and the performance of grassland plants: a comparison of arthropod, mollusc and rodent herbivory. J Ecol 84:43–51. https://doi.org/10.2307/2261698

    Article  Google Scholar 

  39. Johnson MTJ, Bertrand JA, Turcotte MM (2016) Precision and accuracy in quantifying herbivory. Ecol Entomol 41:112–121. https://doi.org/10.1111/een.12280

    Article  Google Scholar 

  40. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. https://doi.org/10.1038/417067a

    Article  CAS  PubMed  Google Scholar 

  41. Klötzli F, Dietl W, Marti K, Schubiger-Bosshard C, Walther G-R (2010) Vegetation Europas – Das Offenland im vegetationskundlich-ökologischen Überblick. Ott Verlag, Bern, p 1192

    Google Scholar 

  42. Kos M, Tuijl MAB, de Roo J, Mulder PPJ, Bezemer TM (2015) Species-specific plant-soil feedback effects on above-ground plant-insect interactions. J Ecol 103:904–914. https://doi.org/10.1111/1365-2745.12402

    Article  CAS  Google Scholar 

  43. Kostenko O, van de Voorde TFJ, Mulder PPJ, van der Putten WH, Bezemer TM (2012) Legacy effects of aboveground–belowground interactions. Ecol Lett 15:813–821. https://doi.org/10.1111/j.1461-0248.2012.01801.x

    Article  PubMed  Google Scholar 

  44. Kulmatiski A (2016) Factorial and, self vs. other’ plant soil feedback experiments produce similar predictions of plant growth in communities. Plant Soil 408:485–492. https://doi.org/10.1007/s11104-016-2946-6

    Article  CAS  Google Scholar 

  45. Kulmatiski A, Kardol P (2008) Getting plant-soil feedbacks out of the greenhouse: experimental and conceptual approaches. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 69, Springer, Heidelberg, pp 449–472. https://doi.org/10.1007/978-3-540-72954-9_18

  46. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytic review. Ecol Lett 11:980–992. https://doi.org/10.1111/j.1461-0248.2008.01209.x

    Article  PubMed  Google Scholar 

  47. MacDonald AAM, Kotanen PM (2010) The effect of disturbance and enemy exclusion on performance of an invasive species, common ragweed, in its native range. Oecologia 162:977–986. https://doi.org/10.1007/s00442-009-1557-9

    Article  PubMed  Google Scholar 

  48. Manning P, Gossner MM, Bossdorf O, Allan E, Zhang YY, Prati D, Blüthgen N, Boch S, Böhm S, Börschig C, Hölzel N, Jung K, Klaus VH, Klein AM, Kleinebecker T, Krauss J, Lange M, Müller J, Pašalić E, Socher A, Tscharpka M, Türke M, Weiner C, Werner M, Gockel S, Hemp A, Renner SC, Wells C, Buscot F, Kalko EKV, Linsenmair KE, Weisser WW, Fischer M (2015) Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96:1492–1501. https://doi.org/10.1890/14-1307.1

    Article  Google Scholar 

  49. Massey FP, Ennos E, Hartley SE (2007) Grasses and the resource availability hypothesis: the importance of silica-based defences. J Ecol 95:414–424. https://doi.org/10.1111/j.1365-2745.2007.01223.x

    Article  CAS  Google Scholar 

  50. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161. https://doi.org/10.1146/annurev.es.11.110180.001003

    Article  Google Scholar 

  51. Morriën E, Engelkes T, van der Putten WH (2011) Additive effects of aboveground polyphagus herbivores and soil feedback in native and range-expanding exotic plants. Ecology 92:1344–1352. https://doi.org/10.1890/10-1937.1

    Article  PubMed  Google Scholar 

  52. Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in Arbuscular myccorhizas. Trends Ecol Evol 10:407–411. https://doi.org/10.1016/s0169-5347(00)89157-0

    Article  CAS  PubMed  Google Scholar 

  53. Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland. J Ecol 98:1074–1083. https://doi.org/10.1111/j.1365-2745.2010.01679.x

    Article  Google Scholar 

  54. Petermann JS, Fergus AJF, Turnbull LA, Schmid B (2008) Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89:2399–2406. https://doi.org/10.1890/07-2056.1

    Article  PubMed  Google Scholar 

  55. Pierce S, Negreiros D, Cerabolini BEC, Kattge J, Diaz S, Kleyer M, Shipley B, Wright SJ, Soudzilovskaia NA, Onipchenko VG, van Bodegom PM, Frenette-Dussault C, Weiher E, Pinho BX, Conrnelissen JHC, Grime JP, Thompson K, Hunt R, Wilson PJ, Buffa G, Nyakunga OC, Reich PB, Caccianiga M, Mangili F, Cerian RM, Luzzaro A, Brusa G, Siefert A, Barbosa NPU, Chapin FSC III, Cornwell WK, Fang J, Fernandes GW, Garnier E, Le Stradic S, Peñuelas J, Melo FPL, Slaviero A, Tabarelli M, Tampucci D (2017) A field-portable list of CRS strategies. Funct Ecol 31:444–457. https://doi.org/10.1111/1365-2435.12722

    Article  Google Scholar 

  56. Pinheiro J, Bates D, DebRoy S, Sarkar D, R CoreTeam (2017) nlme: Linear and nonlinear mixed effects models. R.package version 3.1-131. Retrieved from https://CRAN.R-project.org/package=nlme. Accessed 4 Mar 2018

  57. R Developmental Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  58. Reinhart KO, Rinella MJ (2016) A common soil handling technique can generate incorrect estimates of soil biota effects on plants. N Phytol 210:786–789. https://doi.org/10.1111/nph.13822

    Article  Google Scholar 

  59. Rodríguez MA, Brown VK (1998) Plant competition and slug herbivory: effects on the yield and biomass allocation pattern of Poa annua L. Acta Oecol 19:37–46. https://doi.org/10.1016/S1146-609X(98)80006-4

    Article  Google Scholar 

  60. Russel FL, Rose KE, Louda SM (2010) Seed availability and insect herbivory limit recruitment and adult density of native tall thistle. Ecology 91:3081–3093. https://doi.org/10.1890/09-1101.1

    Article  Google Scholar 

  61. Schädler M, Jung G, Auge H, Brandl R (2003) Palatability, decomposition and insect herbivory: patterns in a successional old-field plant community. Oikos 103:121–132. https://doi.org/10.1034/j.1600-0706.2003.12659.x

    Article  Google Scholar 

  62. Simons NK, Gossner MM, Lewinsohn TM, Boch S, Lange M, Müller J, Pašalić E, Socher SA, Türke M, Fischer M, Weisser WW (2014a) Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS One 9(9):e107033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simons NK, Gossner MM, Lewinsohn TM, Lange M, Türke M, Weisser WW (2014b) Effects of land-use intensity on arthropod species abundance distributions in grasslands. J Anim Ecol 84:143–154. https://doi.org/10.1111/1365-2656.12278

    Article  PubMed  Google Scholar 

  64. Smith AH, Pinkard EA, Stone C, Battaglia M, Mohammed CL (2005) Precision and accuracy of pest and pathogen damage assessment in young Eucalypt plantations. Environ Monit Assess 111:243–256. https://doi.org/10.1007/s10661-005-8222-5

    Article  CAS  PubMed  Google Scholar 

  65. Smith-Ramesh LM, Reynolds HL (2017) The next frontier of plant-soil feedback research: unraveling context dependence across biotic and abiotic gradients. J Veg Sci 28:484–494. https://doi.org/10.1111/jvs.12519

    Article  Google Scholar 

  66. Stajković-Srbinović O, Delić D, Kuzmanović D, Sikirić B, Rasalić N, Nikolić B, Knežević-Vukčević J (2016) Growth and nutrient uptake of orchardgrass (Dactylis glomerata L.) and meadow fescue (Festuca pratensis Huds.) as affected by rhizobacteria. Not Bot Hortic Agrobo 44:296–301. https://doi.org/10.15835/nbha44110252

  67. Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker PAHM, Feussner I, Pieterse CMJ (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. PNAS 22:E5213–E5222. https://doi.org/10.1073/pnas.1722335115

    Article  CAS  Google Scholar 

  68. Tava A (2001) Coumarin-containing grass: volatiles from sweet vernalgrass (Anthoxanthum odoratum L.). J Essent Oil Res 13:357–370. https://doi.org/10.1080/10412905.2001.9712236

    Article  Google Scholar 

  69. Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soilmicrobes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  70. Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA Suding KN, van de Voorde TFJ, Wardle DA (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi: https://doi.org/10.1111/1365-2745.12054

  71. Van der Putten WH, Bradford MA, Brinkman EP, van der Voorde TFJ, Veen GF (2016) Where, when and how plant-soil feedback matters in a changing world. Funct Ecol 30:1109–1121. https://doi.org/10.1111/1365-2435.12657

    Article  Google Scholar 

  72. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. https://doi.org/10.1126/science.1094875

    Article  CAS  PubMed  Google Scholar 

  73. White JF, Chen Q, Torres MS, Mattera R, Irizarry I, Tadych M, Bergen M (2015) Collaboration between grass seedlings and rhizobacteria to scarvenge organic nitrogen in soils. AoB 7:plu093. https://doi.org/10.1093/aobpla/plu093

  74. Xu G, Fan X, Miller A (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182. https://doi.org/10.1146/annurev-arplant-042811-10553

    Article  CAS  PubMed  Google Scholar 

  75. Zhu F, Heinen R, van der Sluijs M, Raaijmakers C, Biere A, Bezemer TM (2018) Species-specific plant-soil feedbacks alter herbivore induced gene expression and defense chemistry in Plantago lanceolata. Oecologia 188:801–811. https://doi.org/10.10007/s00442-018-4245-9

Download references

Acknowledgements

We specially thank Torsten Meene for help in the field, Gabriele Gehrmann and Silvia Heim for their help with the analysis of soil characteristics and C:N ratios, Frank Warschau for logistic support and the Botanical Garden Potsdam for their cooperation. We also thank the managers of the Exploratory Hainich-Dün, Sonja Gockel, Kerstin Wiesner, Juliane Vogt and Katrin Lorenzen and all former managers for their work in maintaining the plot and project infrastructure; Simone Pfeiffer, Maren Gleisberg, Christiane Fischer and Jule Mangels for giving support through the central office, Jens Nieschulze, Micheal Owonibi and Andreas Ostrowski for managing the central data base, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. This work has been (partly) funded by the DFG Priority Programm “Infrastructure-Biodiversity-Exploratories” and by the DFG-project LandUseFeedback (JO 777/9-1).

Author information

Affiliations

Authors

Contributions

JH conceived the idea, designed the study, and performed the experiment; JH collected data, with NKS, SS, and MMG provided additional data; JH, DP, and JJ analysed the data; JH led the writing of the manuscript. All authors contributed critically to the draft.

Corresponding author

Correspondence to Johannes Heinze.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Edith B. Allen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 853 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heinze, J., Simons, N.K., Seibold, S. et al. The relative importance of plant-soil feedbacks for plant-species performance increases with decreasing intensity of herbivory. Oecologia 190, 651–664 (2019). https://doi.org/10.1007/s00442-019-04442-9

Download citation

Keywords

  • Plant-soil feedback
  • Herbivorous insects
  • Field conditions
  • Selective herbivory
  • Nutritional quality