, Volume 190, Issue 3, pp 651–664 | Cite as

The relative importance of plant-soil feedbacks for plant-species performance increases with decreasing intensity of herbivory

  • Johannes HeinzeEmail author
  • Nadja K. Simons
  • Sebastian Seibold
  • Alexander Wacker
  • Guntram Weithoff
  • Martin M. Gossner
  • Daniel Prati
  • T. Martijn Bezemer
  • Jasmin Joshi
Community ecology – original research


Under natural conditions, aboveground herbivory and plant-soil feedbacks (PSFs) are omnipresent interactions strongly affecting individual plant performance. While recent research revealed that aboveground insect herbivory generally impacts the outcome of PSFs, no study tested to what extent the intensity of herbivory affects the outcome. This, however, is essential to estimate the contribution of PSFs to plant performance under natural conditions in the field. Here, we tested PSF effects both with and without exposure to aboveground herbivory for four common grass species in nine grasslands that formed a gradient of aboveground invertebrate herbivory. Without aboveground herbivores, PSFs for each of the four grass species were similar in each of the nine grasslands—both in direction and in magnitude. In the presence of herbivores, however, the PSFs differed from those measured under herbivory exclusion, and depended on the intensity of herbivory. At low levels of herbivory, PSFs were similar in the presence and absence of herbivores, but differed at high herbivory levels. While PSFs without herbivores remained similar along the gradient of herbivory intensity, increasing herbivory intensity mostly resulted in neutral PSFs in the presence of herbivores. This suggests that the relative importance of PSFs for plant-species performance in grassland communities decreases with increasing intensity of herbivory. Hence, PSFs might be more important for plant performance in ecosystems with low herbivore pressure than in ecosystems with large impacts of insect herbivores.


Plant-soil feedback Herbivorous insects Field conditions Selective herbivory Nutritional quality 



We specially thank Torsten Meene for help in the field, Gabriele Gehrmann and Silvia Heim for their help with the analysis of soil characteristics and C:N ratios, Frank Warschau for logistic support and the Botanical Garden Potsdam for their cooperation. We also thank the managers of the Exploratory Hainich-Dün, Sonja Gockel, Kerstin Wiesner, Juliane Vogt and Katrin Lorenzen and all former managers for their work in maintaining the plot and project infrastructure; Simone Pfeiffer, Maren Gleisberg, Christiane Fischer and Jule Mangels for giving support through the central office, Jens Nieschulze, Micheal Owonibi and Andreas Ostrowski for managing the central data base, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. This work has been (partly) funded by the DFG Priority Programm “Infrastructure-Biodiversity-Exploratories” and by the DFG-project LandUseFeedback (JO 777/9-1).

Author contribution statement

JH conceived the idea, designed the study, and performed the experiment; JH collected data, with NKS, SS, and MMG provided additional data; JH, DP, and JJ analysed the data; JH led the writing of the manuscript. All authors contributed critically to the draft.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2019_4442_MOESM1_ESM.pdf (853 kb)
Supplementary material 1 (PDF 853 kb)


  1. Aarssen LW (2015) Body size and fitness in plants: revisiting the selection consequences of competition. Perspect Plant Ecol Evol Syst 17:236–242. CrossRefGoogle Scholar
  2. Adesemoye AO, Tobert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15 N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58. CrossRefGoogle Scholar
  3. Baltensperger AA, Schank SC, Smith RL, Littell RC, Bouton JH, Dudeck AE (1978) Effect of inoculation with azopirillum and azotobacter on turf-type Bermuda genotypes. Crop Sci 18:1043–1045. CrossRefGoogle Scholar
  4. Baxendale C, Orwin KH, Poly F, Pommier T, Bardgett RD (2014) Are plant–soil feedback responses explained by plant traits? N Phytol 204:408–423. CrossRefGoogle Scholar
  5. Bazzaz A (1996) Plants in changing environments: linking physiological, population and community ecology. Cambridge University Press, CambridgeGoogle Scholar
  6. Behmer ST (2009) Insect herbivore nutrient regulation. Annu Rev Entomol 54:165–187. CrossRefGoogle Scholar
  7. Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman & Hall, New York, p 312Google Scholar
  8. Berner LT, Law BE (2016) Plant traits, productivity, biomass and soil properties from forest sites in the Pacific Northwest, 1999–2014. Sci Data 3:160002. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berner D, Blanckenhorn WU, Körner C (2005) Grasshoppers cope with host quality by compensatory feeding and food selection: N limitation challenged. Oikos 111:525–533. CrossRefGoogle Scholar
  10. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573. CrossRefGoogle Scholar
  11. Bever JD, Mangan SA, Alexander HM (2015) Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst 46:305–325. CrossRefGoogle Scholar
  12. Bezemer TM, van der Putten WH, Martens H, van de Voorde TFJ, Mulder PPJ, Kostenko O (2013) Above- and below-ground herbivory effects on below-ground plant-fungus interactions and plant-soil feedback responses. J Ecol 101:325–333. CrossRefGoogle Scholar
  13. Blüthgen N, Dormann CF, Prati D, Klaus VH, Kleinebecker T, Hölzel N, Alt F, Boch S, Gockel S, Hemp A, Müller J, Nieschulze J, Renner SC, Schöning I, Schumacher U, Socher SA, Wells K, Birkhofer K, Buscot F, Oelmann Y, Rothenwöhrer C, Scherber C, Tscharntke T, Weiner CN, Fischer M, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220. CrossRefGoogle Scholar
  14. Borgström P, Strengbom J, Viketoft M, Bommarco R (2016) Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect. PeerJ. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Börschig C, Klein A-M, Kraus J (2014) Effects of grassland management, endophytic fungi and predators on aphid abundance in two distinct regions. J Plant Ecol 7:490–498. CrossRefGoogle Scholar
  16. Brandt AJ, del Pino GA, Burns JH (2014) Experimental protocol for manipulating plant-induced soil heterogeneity. JoVE 85:e51580. CrossRefGoogle Scholar
  17. Branson DH, Sword GA (2009) Grasshopper herbivory affects native plant diversity and abundance in a grassland dominated by the exotic grass Agropyron cristatum. Restor Ecol 17:89–96. CrossRefGoogle Scholar
  18. Brinkman EP, van der Putten WH, Bakker E-J, Verhoeven KJF (2010) Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. J Ecol 98:1063–1073. CrossRefGoogle Scholar
  19. Cahill JF Jr, Cale JA, Karst J, Bao T, Pec GJ, Erbilgin N (2017) No silver bullet: different soil handling techniques are useful for different research questions, exhibit differential type I and II error rates, and are sensitive to sampling intensity. N Phytol 216:11–14. CrossRefGoogle Scholar
  20. Cebrian J, Lartigue J (2004) Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol Monogr 74:237–259. CrossRefGoogle Scholar
  21. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366. CrossRefGoogle Scholar
  22. Chisté MN, Mody K, Gossner MM, Simons NK, Köhler G, Weisser WW, Blüthgen N (2016) Losers, winners, and opportunists: how grassland land-use intensity affects orthopteran communities. Ecosphere 7(11):e01545. CrossRefGoogle Scholar
  23. Cornelissen JHC, Lavorel S, Granier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurements of plant functional traits worldwide. Aust J Bot 51:335–380. CrossRefGoogle Scholar
  24. Cortois R, Schröder-Georgi T, Weigelt A, van der Putten WH, de Deyn G (2016) Plant-soil feedbacks: role of plant functional group and plant traits. J Ecol 104:1608–1617. CrossRefGoogle Scholar
  25. Crawley MJ (1989) Insect herbivores and plant population dynamics. Annu Rev Entomol 34:531–564. CrossRefGoogle Scholar
  26. DeLong JR, Fry EL, Veen GF, Kardol P (2019) Why are plant-soil feedbacks so unpredictable, and what to do about it? Funct Ecol 33:118–128. CrossRefGoogle Scholar
  27. Djonova E, Petkova G, Stancheva I, Geneva M, Michovsky T (2016) Repsonse of pasture grasses to inoculation with mycorrhizal fungi and N-fixing bacteria. BJSS 1:64–77Google Scholar
  28. Egerov E, Gossner MM, Meyer ST, Weisser WW, Brändle M (2017) Does plant phylogenetic diversity increase invertebrate herbivory in managed grasslands? Basic Appl Ecol 20:40–50. CrossRefGoogle Scholar
  29. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl Ecol 11:473–485. CrossRefGoogle Scholar
  30. Gossner MM, Weisser WW, Meyer ST (2014) Invertebrate herbivory decreases along a gradient of increasing land-use intensity in German grasslands. Basic Appl Ecol 15:347–352. CrossRefGoogle Scholar
  31. Gundale MJ, Wardle DA, Kardol P, Nilsson MC (2019) Comparison of plant-soil feedback experimental approaches for testing soil biotic interactions among ecosystems. N Phytol 221:557–587. CrossRefGoogle Scholar
  32. Heinze J, Joshi J (2018) Plant-soil feedback effects can be masked by aboveground herbivory under natural field conditions. Oecologia 186:235–246. CrossRefPubMedGoogle Scholar
  33. Heinze J, Bergmann J, Rillig MC, Joshi J (2015a) Negative biotic soil-effects enhance biodiversity by restricting potentially dominant plant species in grasslands. Perspect Plant Ecol Evol Syst 17:227–235. CrossRefGoogle Scholar
  34. Heinze J, Werner T, Weber E, Rillig MC, Joshi J (2015b) Soil biota effects on local abundances of three grass species along a land-use gradient. Oecologia 179:249–259. CrossRefPubMedGoogle Scholar
  35. Heinze J, Sitte M, Schindhelm A, Wright J, Joshi J (2016) Plant-soil feedbacks: a comparative study on the relative importance of soil-feedbacks in the greenhouse vs. field. Oecologia 181:559–569. CrossRefPubMedGoogle Scholar
  36. Heinze J, Gensch S, Weber E, Joshi J (2017) Soil temperature modifies effects of soil biota on plant growth. J Plant Ecol 10:808–821. CrossRefGoogle Scholar
  37. Huberty AF, Denno RF (2006) Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent fife-history strategies. Oecologia 149:444–455. CrossRefPubMedGoogle Scholar
  38. Hulme PE (1996) Herbivores and the performance of grassland plants: a comparison of arthropod, mollusc and rodent herbivory. J Ecol 84:43–51. CrossRefGoogle Scholar
  39. Johnson MTJ, Bertrand JA, Turcotte MM (2016) Precision and accuracy in quantifying herbivory. Ecol Entomol 41:112–121. CrossRefGoogle Scholar
  40. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. CrossRefPubMedGoogle Scholar
  41. Klötzli F, Dietl W, Marti K, Schubiger-Bosshard C, Walther G-R (2010) Vegetation Europas – Das Offenland im vegetationskundlich-ökologischen Überblick. Ott Verlag, Bern, p 1192Google Scholar
  42. Kos M, Tuijl MAB, de Roo J, Mulder PPJ, Bezemer TM (2015) Species-specific plant-soil feedback effects on above-ground plant-insect interactions. J Ecol 103:904–914. CrossRefGoogle Scholar
  43. Kostenko O, van de Voorde TFJ, Mulder PPJ, van der Putten WH, Bezemer TM (2012) Legacy effects of aboveground–belowground interactions. Ecol Lett 15:813–821. CrossRefPubMedGoogle Scholar
  44. Kulmatiski A (2016) Factorial and, self vs. other’ plant soil feedback experiments produce similar predictions of plant growth in communities. Plant Soil 408:485–492. CrossRefGoogle Scholar
  45. Kulmatiski A, Kardol P (2008) Getting plant-soil feedbacks out of the greenhouse: experimental and conceptual approaches. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 69, Springer, Heidelberg, pp 449–472.
  46. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytic review. Ecol Lett 11:980–992. CrossRefPubMedGoogle Scholar
  47. MacDonald AAM, Kotanen PM (2010) The effect of disturbance and enemy exclusion on performance of an invasive species, common ragweed, in its native range. Oecologia 162:977–986. CrossRefPubMedGoogle Scholar
  48. Manning P, Gossner MM, Bossdorf O, Allan E, Zhang YY, Prati D, Blüthgen N, Boch S, Böhm S, Börschig C, Hölzel N, Jung K, Klaus VH, Klein AM, Kleinebecker T, Krauss J, Lange M, Müller J, Pašalić E, Socher A, Tscharpka M, Türke M, Weiner C, Werner M, Gockel S, Hemp A, Renner SC, Wells C, Buscot F, Kalko EKV, Linsenmair KE, Weisser WW, Fischer M (2015) Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96:1492–1501. CrossRefGoogle Scholar
  49. Massey FP, Ennos E, Hartley SE (2007) Grasses and the resource availability hypothesis: the importance of silica-based defences. J Ecol 95:414–424. CrossRefGoogle Scholar
  50. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161. CrossRefGoogle Scholar
  51. Morriën E, Engelkes T, van der Putten WH (2011) Additive effects of aboveground polyphagus herbivores and soil feedback in native and range-expanding exotic plants. Ecology 92:1344–1352. CrossRefPubMedGoogle Scholar
  52. Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in Arbuscular myccorhizas. Trends Ecol Evol 10:407–411. CrossRefPubMedGoogle Scholar
  53. Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland. J Ecol 98:1074–1083. CrossRefGoogle Scholar
  54. Petermann JS, Fergus AJF, Turnbull LA, Schmid B (2008) Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89:2399–2406. CrossRefPubMedGoogle Scholar
  55. Pierce S, Negreiros D, Cerabolini BEC, Kattge J, Diaz S, Kleyer M, Shipley B, Wright SJ, Soudzilovskaia NA, Onipchenko VG, van Bodegom PM, Frenette-Dussault C, Weiher E, Pinho BX, Conrnelissen JHC, Grime JP, Thompson K, Hunt R, Wilson PJ, Buffa G, Nyakunga OC, Reich PB, Caccianiga M, Mangili F, Cerian RM, Luzzaro A, Brusa G, Siefert A, Barbosa NPU, Chapin FSC III, Cornwell WK, Fang J, Fernandes GW, Garnier E, Le Stradic S, Peñuelas J, Melo FPL, Slaviero A, Tabarelli M, Tampucci D (2017) A field-portable list of CRS strategies. Funct Ecol 31:444–457. CrossRefGoogle Scholar
  56. Pinheiro J, Bates D, DebRoy S, Sarkar D, R CoreTeam (2017) nlme: Linear and nonlinear mixed effects models. R.package version 3.1-131. Retrieved from Accessed 4 Mar 2018
  57. R Developmental Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  58. Reinhart KO, Rinella MJ (2016) A common soil handling technique can generate incorrect estimates of soil biota effects on plants. N Phytol 210:786–789. CrossRefGoogle Scholar
  59. Rodríguez MA, Brown VK (1998) Plant competition and slug herbivory: effects on the yield and biomass allocation pattern of Poa annua L. Acta Oecol 19:37–46. CrossRefGoogle Scholar
  60. Russel FL, Rose KE, Louda SM (2010) Seed availability and insect herbivory limit recruitment and adult density of native tall thistle. Ecology 91:3081–3093. CrossRefGoogle Scholar
  61. Schädler M, Jung G, Auge H, Brandl R (2003) Palatability, decomposition and insect herbivory: patterns in a successional old-field plant community. Oikos 103:121–132. CrossRefGoogle Scholar
  62. Simons NK, Gossner MM, Lewinsohn TM, Boch S, Lange M, Müller J, Pašalić E, Socher SA, Türke M, Fischer M, Weisser WW (2014a) Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS One 9(9):e107033CrossRefPubMedPubMedCentralGoogle Scholar
  63. Simons NK, Gossner MM, Lewinsohn TM, Lange M, Türke M, Weisser WW (2014b) Effects of land-use intensity on arthropod species abundance distributions in grasslands. J Anim Ecol 84:143–154. CrossRefPubMedGoogle Scholar
  64. Smith AH, Pinkard EA, Stone C, Battaglia M, Mohammed CL (2005) Precision and accuracy of pest and pathogen damage assessment in young Eucalypt plantations. Environ Monit Assess 111:243–256. CrossRefPubMedGoogle Scholar
  65. Smith-Ramesh LM, Reynolds HL (2017) The next frontier of plant-soil feedback research: unraveling context dependence across biotic and abiotic gradients. J Veg Sci 28:484–494. CrossRefGoogle Scholar
  66. Stajković-Srbinović O, Delić D, Kuzmanović D, Sikirić B, Rasalić N, Nikolić B, Knežević-Vukčević J (2016) Growth and nutrient uptake of orchardgrass (Dactylis glomerata L.) and meadow fescue (Festuca pratensis Huds.) as affected by rhizobacteria. Not Bot Hortic Agrobo 44:296–301.
  67. Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker PAHM, Feussner I, Pieterse CMJ (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. PNAS 22:E5213–E5222. CrossRefGoogle Scholar
  68. Tava A (2001) Coumarin-containing grass: volatiles from sweet vernalgrass (Anthoxanthum odoratum L.). J Essent Oil Res 13:357–370. CrossRefGoogle Scholar
  69. Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soilmicrobes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. CrossRefPubMedGoogle Scholar
  70. Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA Suding KN, van de Voorde TFJ, Wardle DA (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi:
  71. Van der Putten WH, Bradford MA, Brinkman EP, van der Voorde TFJ, Veen GF (2016) Where, when and how plant-soil feedback matters in a changing world. Funct Ecol 30:1109–1121. CrossRefGoogle Scholar
  72. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. CrossRefPubMedGoogle Scholar
  73. White JF, Chen Q, Torres MS, Mattera R, Irizarry I, Tadych M, Bergen M (2015) Collaboration between grass seedlings and rhizobacteria to scarvenge organic nitrogen in soils. AoB 7:plu093.
  74. Xu G, Fan X, Miller A (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182. CrossRefPubMedGoogle Scholar
  75. Zhu F, Heinen R, van der Sluijs M, Raaijmakers C, Biere A, Bezemer TM (2018) Species-specific plant-soil feedbacks alter herbivore induced gene expression and defense chemistry in Plantago lanceolata. Oecologia 188:801–811.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Johannes Heinze
    • 1
    • 2
    Email author
  • Nadja K. Simons
    • 3
    • 4
  • Sebastian Seibold
    • 3
  • Alexander Wacker
    • 5
  • Guntram Weithoff
    • 6
  • Martin M. Gossner
    • 7
  • Daniel Prati
    • 8
  • T. Martijn Bezemer
    • 9
    • 10
  • Jasmin Joshi
    • 1
    • 2
    • 11
  1. 1.Institute of Biochemistry and Biology, Biodiversity Research/Systematic BotanyUniversity of PotsdamPotsdamGermany
  2. 2.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
  3. 3.Chair for Terrestrial Ecology, Department of Ecology and Ecosystem ManagementTechnical University of MunichFreisingGermany
  4. 4.Ecological Networks, Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
  5. 5.Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
  6. 6.Department Ecology and Ecosystem ModellingUniversity of PotsdamPotsdamGermany
  7. 7.Forest EntomologySwiss Federal Research Institute WSLBirmensdorfSwitzerland
  8. 8.Institute of Plant SciencesUniversity of BernBernSwitzerland
  9. 9.Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  10. 10.Section Plant Ecology and Phytochemistry, Institute of BiologyLeiden UniversityLeidenThe Netherlands
  11. 11.Institute for Landscape and Open SpaceHochschule für Technik HSR RapperswilRapperswilSwitzerland

Personalised recommendations