Skip to main content

Long-term acclimation to near-future ocean acidification has negligible effects on energetic attributes in a juvenile coral reef fish

Abstract

Increased levels of dissolved carbon dioxide (CO2) drive ocean acidification and have been predicted to increase the energy use of marine fishes via physiological and behavioural mechanisms. This notion is based on a theoretical framework suggesting that detrimental effects on energy use are caused by plasma acid–base disruption in response to hypercapnic acidosis, potentially in combination with a malfunction of the gamma aminobutyric acid type A (GABAA) receptors in the brain. However, the existing empirical evidence testing these effects primarily stems from studies that exposed fish to elevated CO2 for a few days and measured a small number of traits. We investigated a range of energetic traits in juvenile spiny chromis damselfish (Acanthochromis polyacanthus) over 3 months of acclimation to projected end-of-century CO2 levels (~ 1000 µatm). Somatic growth and otolith size and shape were unaffected by the CO2 treatment across 3 months of development in comparison with control fish (~ 420 µatm). Swimming activity during behavioural assays was initially higher in the elevated CO2 group, but this effect dissipated within ~ 25 min following handling. The transient higher activity of fish under elevated CO2 was not associated with a detectable difference in the rate of oxygen uptake nor was it mediated by GABAA neurotransmitter interference because treatment with a GABAA antagonist (gabazine) did not abolish the CO2 treatment effect. These findings contrast with several short-term studies by suggesting that end-of-century levels of CO2 may have negligible direct effects on the energetics of at least some species of fish.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The dataset supporting this manuscript is publicly archived in the repository figshare: https://doi.org/10.6084/m9.figshare.7965005, following best practices (Roche et al. 2015).

References

  1. Bates D, Mächler M, Bolker BM, Walker SC (2014) lme4: Linear mixed-effects models using Eigen and S4 R package version 1.1-7

  2. Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat Clim Change 2:38–41. https://doi.org/10.1038/nclimate1291

    Article  CAS  Google Scholar 

  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300

    Google Scholar 

  4. Bignami S, Enochs IC, Manzello DP, Sponaugle S, Cowen RK (2013a) Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function. Proc Natl Acad Sci USA 110:7366–7370. https://doi.org/10.1073/pnas.1301365110

    Article  PubMed  Google Scholar 

  5. Bignami S, Sponaugle S, Cowen RK (2013b) Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum. Glob Change Biol 19:996–1006. https://doi.org/10.1111/gcb.12133

    Article  Google Scholar 

  6. Bignami S, Sponaugle S, Cowen RK (2014) Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, mahi-mahi Coryphaena hippurus. Aquat Biol 21:249–260. https://doi.org/10.3354/ab00598

    Article  Google Scholar 

  7. Boisclair D, Leggett W (1989) The importance of activity in bioenergetics models applied to actively foraging fishes. Can J Fish Aquat Sci 46:1859–1867

    Article  Google Scholar 

  8. Branch TA, DeJoseph BM, Ray LJ, Wagner CA (2013) Impacts of ocean acidification on marine seafood. Trends Ecol Evol 28:178–186

    Article  PubMed  Google Scholar 

  9. Brauner C, Baker D (2009) Patterns of acid–base regulation during exposure to hypercarbia in fishes. In: Glass M, Wood S (eds) Cardio-respiratory control in vertebrates. Springer, Berlin, pp 43–63

    Chapter  Google Scholar 

  10. Browman HI (2016) Applying organized scepticism to ocean acidification research. ICES J Mar Sci 73:529–536

    Article  Google Scholar 

  11. Chambers R, Candelmo A, Habeck E, Poach M, Wieczorek D, Cooper K, Greenfield C, Phelan B (2014) Effects of elevated CO2 in the early life stages of summer flounder, Paralichthys dentatus, and potential consequences of ocean acidification. Biogeosciences 11:1613–1626

    Article  CAS  Google Scholar 

  12. Checkley DM, Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R (2009) Elevated CO2 enhances otolith growth in young fish. Science 324:1683

    Article  CAS  PubMed  Google Scholar 

  13. Chivers DP, McCormick MI, Nilsson GE, Munday PL, Watson S-A, Meekan MG, Mitchell MD, Corkill KC, Ferrari MCO (2014a) Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob Change Biol 20:515–522. https://doi.org/10.1111/gcb.12291

    Article  Google Scholar 

  14. Chivers DP, Ramasamy RA, McCormick MI, Watson SA, Siebeck UE, Ferrari MCO (2014b) Temporal constraints on predation risk assessment in a changing world. Sci Total Environ 500:332–338. https://doi.org/10.1016/j.scitotenv.2014.08.059

    Article  CAS  PubMed  Google Scholar 

  15. Chung W-S, Marshall NJ, Watson S-A, Munday PL, Nilsson GE (2014) Ocean acidification slows retinal function in a damselfish through interference with GABA(A) receptors. J Exp Biol 217:323–326. https://doi.org/10.1242/jeb.092478

    Article  CAS  PubMed  Google Scholar 

  16. Clark TD, Seymour RS (2006) Cardiorespiratory physiology and swimming energetics of a high-energy-demand teleost, the yellowtail kingfish (Seriola lalandi). J Exp Biol 209:3940–3951

    Article  CAS  PubMed  Google Scholar 

  17. Clark TD, Donaldson MR, Pieperhoff S, Drenner SM, Lotto A, Cooke SJ, Hinch SG, Patterson DA, Farrell AP (2012) Physiological benefits of being small in a changing world: responses of coho salmon (Oncorhynchus kisutch) to an acute thermal challenge and a simulated capture event. PLoS One 7:e39079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782. https://doi.org/10.1242/jeb.084251

    Article  Google Scholar 

  19. Clark TD, Roche DG, Binning SA, Speers-Roesch B, Sundin J (2017) Maximum thermal limits of coral reef damselfishes are size-dependent and resilient to near-future ocean acidification. J Exp Biol 220:3519–3526

    Article  PubMed  Google Scholar 

  20. Core Team R (2017) R: a language and environment for statistical computing R Foundation for Statistical Computing. Austria, Vienna

    Google Scholar 

  21. Cornwall CE, Hurd CL (2015) Experimental design in ocean acidification research: problems and solutions. ICES J Mar Sci 73:572–581. https://doi.org/10.1093/icesjms/fsv118

    Article  Google Scholar 

  22. Dickson AG (1990) Standard potential of the reaction—AGCL(S) + 1/2H − 2(G) = AG(S) + HCL(AQ) and the standard acidity constant of the ion HSO4- in synthetic sea-water from 273.15-K to 318.15-K. J Chem Thermodyn 22:113–127. https://doi.org/10.1016/0021-9614(90)90074-z

    Article  CAS  Google Scholar 

  23. Esbaugh AJ (2017) Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. J Comp Physiol B 188:1–13. https://doi.org/10.1007/s00360-017-1105-6

    Article  CAS  PubMed  Google Scholar 

  24. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  Google Scholar 

  25. Faleiro F, Baptista M, Santos C, Aurélio ML, Pimentel M, Pegado MR, Paula JR, Calado R, Repolho T, Rosa R (2015) Seahorses under a changing ocean: the impact of warming and acidification on the behaviour and physiology of a poor-swimming bony-armoured fish. Conserv Physiol 3:cov009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferrari MCO, Munday PL, Rummer JL, McCormick MI, Corkill K, Watson S-A, Allan BJM, Meekan MG, Chivers DP (2015) Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Glob Change Biol 21:1848–1855. https://doi.org/10.1111/gcb.12818

    Article  Google Scholar 

  27. Flynn EE, Bjelde BE, Miller NA, Todgham AE (2015) Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish. Conserv Physiol 3:cov033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Franke A, Clemmesen C (2011) Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences 8:3697–3707. https://doi.org/10.5194/bg-8-3697-2011

    Article  CAS  Google Scholar 

  29. Frommel AY, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Piatkowski U, Reusch TBH, Clemmesen C (2012) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat Clim Change 2:42–46. https://doi.org/10.1038/nclimate1324

    Article  CAS  Google Scholar 

  30. Frommel AY, Schubert A, Piatkowski U, Clemmesen C (2013) Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification. Mar Biol 160:1825–1834. https://doi.org/10.1007/s00227-011-1876-3

    Article  CAS  Google Scholar 

  31. Frommel AY, Maneja R, Lowe D, Pascoe CK, Geffen AJ, Folkvord A, Piatkowski U, Clemmesen C (2014) Organ damage in Atlantic herring larvae as a result of ocean acidification. Ecol Appl 24:1131–1143

    Article  PubMed  Google Scholar 

  32. Fulton TW (1904) The rate of growth of fishes. In: 22nd annual report of the fishery board of Scotland, vol 3, pp 141–241

  33. Gagliano M, Depczynski M, Simpson SD, Moore JA (2008) Dispersal without errors: symmetrical ears tune into the right frequency for survival. Proc R Soc Lond B 275:527–534

    Article  Google Scholar 

  34. Gamboa DA (1991) Otolith size versus weight and body-length relationships for eleven fish species of Baja California, Mexico. Fish Bull 89:701–706

    Google Scholar 

  35. Gräns A, Jutfelt F, Sandblom E, Jonsson E, Wiklander K, Seth H, Olsson C, Dupont S, Ortega-Martinez O, Einarsdottir I, Bjornsson BT, Sundell K, Axelsson M (2014) Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut. J Exp Biol 217:711–717. https://doi.org/10.1242/jeb.096743

    Article  PubMed  Google Scholar 

  36. Green L, Jutfelt F (2014) Elevated carbon dioxide alters the plasma composition and behaviour of a shark. Biol Lett 10:20140538. https://doi.org/10.1098/rsbl.2014.0538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hamilton TJ, Holcombe A, Tresguerres M (2014) CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABA(A) receptor functioning. Proc R Soc Lond B 281:20132509. https://doi.org/10.1098/rspb.2013.2509

    Article  CAS  Google Scholar 

  38. Heuer RM, Grosell M (2014) Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol Regul Integr Comp Physiol 307:R1061–R1084. https://doi.org/10.1152/ajpregu.00064.2014

    Article  CAS  PubMed  Google Scholar 

  39. Heuer RM, Welch MJ, Rummer JL, Munday PL, Grosell M (2016) Altered brain ion gradients following compensation for elevated CO2 are linked to behavioural alterations in a coral reef fish. Sci Rep 6:33216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JB, Kleypas J, Van De Leemput IA, Lough JM, Morrison TH (2017) Coral reefs in the Anthropocene. Nature 546:82

    Article  CAS  Google Scholar 

  41. Hurst TP, Fernandez ER, Mathis JT, Miller JA, Stinson CM, Ahgeak EF (2012) Resiliency of juvenile walleye pollock to projected levels of ocean acidification. Aquat Biol 17:247–259. https://doi.org/10.3354/ab00483

    Article  Google Scholar 

  42. Ishimatsu A, Hayashi M, Kikkawa T (2008) Fishes in high-CO2 acidified oceans. Mar Ecol Prog Ser 373:295–302. https://doi.org/10.3354/meps07823

    Article  CAS  Google Scholar 

  43. Jutfelt F, Sundin J, Raby GD, Krång AS, Clark TD (2017) Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol Evol 8:379–390

    Article  Google Scholar 

  44. Ketcham RA (2005) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1:32–41

    Article  Google Scholar 

  45. Lai F, Jutfelt F, Nilsson GE (2015) Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv Physiol 3:018. https://doi.org/10.1093/conphys/cov018

    Article  CAS  Google Scholar 

  46. Lopes A, Morais P, Pimentel M, Rosa R, Munday P, Gonçalves E, Faria A (2016) Behavioural lateralization and shoaling cohesion of fish larvae altered under ocean acidification. Mar Biol 163:243. https://doi.org/10.1007/s00227-016-3026-4

    Article  CAS  Google Scholar 

  47. Lueker TJ, Dickson AG, Keeling CD (2000) Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar Chem 70:105–119

    Article  CAS  Google Scholar 

  48. Maneja RH, Frommel AY, Browman HI, Clemmesen C, Geffen AJ, Folkvord A, Piatkowski U, Durif CMF, Bjelland R, Skiftesvik AB (2013) The swimming kinematics of larval Atlantic cod, Gadus morhua L., are resilient to elevated seawater pCO2. Mar Biol 160:1963–1972

    Article  CAS  Google Scholar 

  49. Maneja RH, Frommel AY, Browman HI, Geffen AJ, Folkvord A, Piatkowski U, Durif CMF, Bjelland R, Skiftesvik AB, Clemmesen C (2015) The swimming kinematics and foraging behavior of larval Atlantic herring (Clupea harengus L.) are unaffected by elevated pCO2. J Exp Mar Biol Ecol 466:42–48

    Article  Google Scholar 

  50. McLeod IM, McCormick MI, Munday PL, Clark TD, Wenger AS, Brooker RM, Takahashi M, Jones GP (2015) Latitudinal variation in larval development of coral reef fishes: implications of a warming ocean. Mar Ecol Prog Ser 521:129–141

    Article  Google Scholar 

  51. Melzner F, Goebel S, Langenbuch M, Gutowska MA, Poertner H-O, Lucassen M (2009) Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater pCO2. Aquat Toxicol 92:30–37. https://doi.org/10.1016/j.aquatox.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  52. Miller GM, Watson S-A, Donelson JM, McCormick MI, Munday PL (2012) Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat Clim Change 2:858–861. https://doi.org/10.1038/nclimate1599

    Article  CAS  Google Scholar 

  53. Milligan CL, Hooke GB, Johnson C (2000) Sustained swimming at low velocity following a bout of exhaustive exercise enhances metabolic recovery in rainbow trout. J Exp Biol 203:921–926

    CAS  PubMed  Google Scholar 

  54. Möhler H, Benke D, Benson J, Luscher B, Rudolph U, Fritschy JM (1997) Diversity in structure, pharmacology, and regulation of GABAA receptors. In: Enna SJ, Bowery NG (eds) The GABA receptors. Springer Science Business Media, New York, pp 11–36

    Chapter  Google Scholar 

  55. Moran D (2014) The importance of accurate CO2 dosing and measurement in ocean acidification studies. J Exp Biol 217:1827–1828

    Article  PubMed  Google Scholar 

  56. Morrongiello JR, Thresher RE, Smith DC (2012) Aquatic biochronologies and climate change. Nat Clim Change 2:849

    Article  Google Scholar 

  57. Mu J, Jin F, Wang J, Zheng N, Cong Y (2015) Effects of CO2-driven ocean acidification on early life stages of marine medaka (Oryzias melastigma). Biogeosciences 12:3861–3868

    Article  Google Scholar 

  58. Munday PL, Crawley NE, Nilsson GE (2009a) Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Mar Ecol Prog Ser 388:235–242. https://doi.org/10.3354/meps08137

    Article  CAS  Google Scholar 

  59. Munday PL, Donelson JM, Dixson DL, Endo GGK (2009b) Effects of ocean acidification on the early life history of a tropical marine fish. Proc R Soc Lond B 276:3275–3283. https://doi.org/10.1098/rspb.2009.0784

    Article  CAS  Google Scholar 

  60. Munday PL, Gagliano M, Donelson JM, Dixson DL, Thorrold SR (2011a) Ocean acidification does not affect the early life history development of a tropical marine fish. Mar Ecol Prog Ser 423:211–221. https://doi.org/10.3354/meps08990

    Article  Google Scholar 

  61. Munday PL, Hernaman V, Dixson DL, Thorrold SR (2011b) Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences 8:1631–1641. https://doi.org/10.5194/bg-8-1631-2011

    Article  CAS  Google Scholar 

  62. Munday PL, Pratchett MS, Dixson DL, Donelson JM, Endo GGK, Reynolds AD, Knuckey R (2013) Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Mar Biol 160:2137–2144. https://doi.org/10.1007/s00227-012-2111-6

    Article  CAS  Google Scholar 

  63. Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE (2014) Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat Clim Change 4:487–492. https://doi.org/10.1038/nclimate2195

    Article  CAS  Google Scholar 

  64. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sorensen C, Watson SA, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Change 2:201–204. https://doi.org/10.1038/nclimate1352

    Article  CAS  Google Scholar 

  65. Norin T, Clark TD (2016) Measurement and relevance of maximum metabolic rate in fishes. J Fish Biol 88:122–151

    Article  CAS  Google Scholar 

  66. Nowicki JP, Miller GM, Munday PL (2012) Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish. J Exp Mar Biol Ecol 412:46–51. https://doi.org/10.1016/j.jembe.2011.10.020

    Article  Google Scholar 

  67. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  68. Ou M, Hamilton TJ, Eom J, Lyall EM, Gallup J, Jiang A, Lee J, Close DA, Yun S-S, Brauner CJ (2015) Responses of pink salmon to CO2-induced aquatic acidification. Nat Clim Change 5:950–955

    Article  CAS  Google Scholar 

  69. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  CAS  PubMed  Google Scholar 

  70. Perry DM, Redman DH, Widman JC, Meseck S, King A, Pereira JJ (2015) Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops. Ecol Evol 5:4187–4196

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pimentel M, Pegado M, Repolho T, Rosa R (2014a) Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvae. Mar Biol 161:725–729. https://doi.org/10.1007/s00227-013-2365-7

    Article  CAS  Google Scholar 

  72. Pimentel MS, Faleiro F, Dionisio G, Repolho T, Pousao-Ferreira P, Machado J, Rosa R (2014b) Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J Exp Biol 217:2062–2070. https://doi.org/10.1242/jeb.092635

    Article  PubMed  Google Scholar 

  73. Pistevos JC, Nagelkerken I, Rossi T, Connell SD (2017) Ocean acidification alters temperature and salinity preferences in larval fish. Oecologia 183:545

    Article  PubMed  Google Scholar 

  74. Pope EC et al (2014) European sea bass, Dicentrarchus labrax, in a changing ocean. Biogeosciences 11:2519–2530. https://doi.org/10.5194/bg-11-2519-2014

    Article  Google Scholar 

  75. Pörtner H-O (2010) Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893

    Article  Google Scholar 

  76. Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718. https://doi.org/10.1007/s10872-004-5763-0

    Article  Google Scholar 

  77. Rasmussen JR, Wells RM, Henty K, Clark TD, Brittain T (2009) Characterization of the hemoglobins of the Australian lungfish Neoceratodus forsteri (Krefft). Comp Biochem Physiol A Mol Integr Physiol 152:162–167

    Article  CAS  PubMed  Google Scholar 

  78. Rennie MD, Collins NC, Shuter BJ, Rajotte JW, Couture P (2005) A comparison of methods for estimating activity costs of wild fish populations: more active fish observed to grow slower. Can J Fish Aquat Sci 62:767–780

    Article  Google Scholar 

  79. Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union Luxembourg

  80. Roche DG, Kruuk LE, Lanfear R, Binning SA (2015) Public data archiving in ecology and evolution: how well are we doing? PLoS Biol 13:e1002295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rodgers R, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21:801–810

    Article  CAS  PubMed  Google Scholar 

  82. Rodgers GG, Tenzing P, Clark TD (2016) Experimental methods in aquatic respirometry: the importance of mixing devices and accounting for background respiration. J Fish Biol 88:65-80. https://doi.org/10.1111/jfb.12848

    Article  CAS  PubMed  Google Scholar 

  83. Rosa R, Baptista M, Lopes VM, Pegado MR, Paula JR, Truebenbach K, Leal MC, Calado R, Repolho T (2014) Early-life exposure to climate change impairs tropical shark survival. Proc R Soc Lond B 281:20141738. https://doi.org/10.1098/rspb.2014.1738

    Article  Google Scholar 

  84. Rossi T, Nagelkerken I, Simpson SD, Pistevos JCA, Watson S-A, Merillet L, Fraser P, Munday PL, Connell SD (2015) Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement. Proc R Soc Lond B 282:20151954

    Article  CAS  Google Scholar 

  85. Rossi T, Nagelkerken I, Pistevos JC, Connell SD (2016) Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Biol Lett 12:20150937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rummer JL, Stecyk JAW, Couturier CS, Watson SA, Nilsson GE, Munday PL (2013) Elevated CO2 enhances aerobic scope of a coral reef fish. Conserv Physiol 1:cot023. https://doi.org/10.1093/conphys/cot023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schade FM, Clemmesen C, Wegner KM (2014) Within- and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (Gasterosteus aculeatus). Mar Biol 161:1667–1676

    Article  CAS  Google Scholar 

  88. Secor DH, Dean JM, Laban EH (1992) Otolith removal and preparation for microstructural examination. In: Stevenson DK, Campana SE (eds) Otolith microstructure, examination and analysis. Canadian special publication of fisheries and aquatic sciences, Ottawa, pp 19–57

    Google Scholar 

  89. Shin LM, Liberzon I (2010) The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35:169–191

    Article  PubMed  Google Scholar 

  90. Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7:917–920. https://doi.org/10.1098/rsbl.2011.0293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stewart A, Wu N, Cachat J, Hart P, Gaikwad S, Wong K, Utterback E, Gilder T, Kyzar E, Newman A (2011) Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuro-Psychopharmacol Biol Psychiatry 35:1421–1431

    Article  CAS  Google Scholar 

  92. Sundin J, Jutfelt F (2016) 9–28 d of exposure to elevated pCO2 reduces avoidance of predator odour but had no effect on behavioural lateralization or swimming activity in a temperate wrasse (Ctenolabrus rupestris). ICES J Mar Sci 73:620–632

    Article  Google Scholar 

  93. Sundin J, Amcoff M, Mateos-González F, Raby GD, Jutfelt F, Clark TD (2017) Long-term exposure to elevated carbon dioxide does not alter activity levels of a coral reef fish in response to predator chemical cues. Behav Ecol Sociobiol 71:108

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tix JA, Hasler CT, Sullivan C, Jeffrey JD, Suski CD (2017) Elevated carbon dioxide has the potential to impact alarm cue responses in some freshwater fishes. Aquat Ecol 51:59. https://doi.org/10.1007/s10452-016-9598-8

    Article  CAS  Google Scholar 

  95. Tresguerres M, Hamilton TJ (2017) Acid–base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification. J Exp Biol 220:2136–2148

    Article  PubMed  Google Scholar 

  96. Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol 13:e1002128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Welch MJ, Watson S-A, Welsh JQ, McCormick MI, Munday PL (2014) Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nat Clim Change 4:1086–1089. https://doi.org/10.1038/nclimate2400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Swedish Research Council Formas (2013-947, JS), the Swedish Research Council VR (637-2014-449, MA), the Australian Research Council (Future Fellowship FT180100154, TDC), the Wenner-Gren Foundation (JS, MA), the Society for Experimental Biology travel grant and the Company of Biologists Travel Grant (JEBTF-150422, JS), the Fulbright Foundation (MA), Inez Johanssons stiftelse (FMG), and through an Australian Endeavour Research Fellowship (GDR). We thank F. Jutfelt for contributing vital equipment, J. Maisano for assistance with the CT-scan, and A. Severati and C. Schlott for collecting wild fish. Invaluable statistical support was provided by E. Hale and C. Blanco, statistical consultants at the University of Texas at Austin. Further support and facilities were provided by the Australian Institute of Marine Science (AIMS). Special thanks to the SeaSim staff at AIMS for logistical support.

Author information

Affiliations

Authors

Contributions

All authors designed and performed the experiments. MA, JS and TDC analysed the data. JS and MA wrote the manuscript with significant contributions in addition to approval from all other authors.

Corresponding author

Correspondence to Josefin Sundin.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Additional information

Communicated by Donovan P German.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 400 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sundin, J., Amcoff, M., Mateos-González, F. et al. Long-term acclimation to near-future ocean acidification has negligible effects on energetic attributes in a juvenile coral reef fish. Oecologia 190, 689–702 (2019). https://doi.org/10.1007/s00442-019-04430-z

Download citation

Keywords

  • Climate change
  • GABA
  • Metabolism
  • Pomacentridae
  • Swimming kinematics