Interspecific homeostatic regulation and growth across aquatic invertebrate detritivores: a test of ecological stoichiometry theory

Abstract

Across resource quality gradients, primary consumers must regulate homeostasis and release of nutrients to optimize growth and fitness. Based primarily on internal body composition, the ecological stoichiometry theory (EST) offers a framework to generalize interspecific patterns of these responses, yet the predictions and underlying assumptions of EST remain poorly tested across many species. We used controlled laboratory feeding experiments to measure homeostasis, nutrient release, and growth across seven field-collected aquatic invertebrate detritivore taxa fed wide resource carbon:nitrogen (C:N) and carbon:phosphorus (C:P) gradients. We found that most invertebrates exhibited strict stoichiometric homeostasis (average 1/H = − 0.018 and 0.026 for C:N and C:P, respectively), supporting assumptions of EST. However, the stoichiometry of new tissue production during growth intervals (growth stoichiometry) deviated − 30 to + 54% and − 145 to + 74% from initial body C:N and C:P, respectively, and across species, growth stoichiometry was not correlated with initial body stoichiometry. Notably, smaller non- and hemimetabolous invertebrates exhibited low, decreasing growth C:N and C:P, whereas larger holometabolous invertebrates exhibited high, often increasing growth C:N and C:P. Despite predictions of EST, interspecific sensitivity of egestion stoichiometry and growth rates to the resource gradient were weakly related to internal body composition across species. While the sensitivity of these patterns differed across taxa, such differences carried a weak phylogenetic signal and were not well predicted by EST. Our findings suggest that traits beyond internal body composition, such as feeding behavior, selective assimilation, and ontogeny, are needed to generalize interspecific patterns in consumer growth and nutrient release across resource quality gradients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allgeier JE, Wenger SJ, Rosemond AD, Schindler DE, Layman CA (2015) Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web. Proc Natl Acad Sci USA 112:E2640–E2647. https://doi.org/10.1073/pnas.1420819112

    Article  CAS  PubMed  Google Scholar 

  2. Alves JM, Caliman A, Guariento RD, Figueiredo-Barros MP, Carneiro LS, Farjalla VF, Bozelli RL, Esteves FA (2010) Stoichiometry of benthic invertebrate nutrient recycling: interspecific variation and the role of body mass. Aquat Ecol 44:421–430. https://doi.org/10.1007/s10452-009-9302-3

    Article  CAS  Google Scholar 

  3. American Publish Health Assocation (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  4. Anderson TR, Hessen DO, Elser JJ, Urabe J (2005) Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers. Am Nat 165:1–15. https://doi.org/10.1086/426598

    Article  PubMed  Google Scholar 

  5. Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia 79:30–37. https://doi.org/10.1007/BF00378236

    Article  CAS  PubMed  Google Scholar 

  6. Atkinson CL, Capps KA, Rugenski AT, Vanni MJ (2017) Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems. Biol Rev 92:2003–2023. https://doi.org/10.1111/brv.12318

    Article  PubMed  Google Scholar 

  7. Back JA, King RS (2013) Sex and size matter: ontogenetic patterns of nutrient content of aquatic insects. Freshw Sci 32:837–848. https://doi.org/10.1899/12-181.1

    Article  Google Scholar 

  8. Benstead JP, Hood JM, Whelan NV, Kendrick MR, Nelson D, Hanninen AF, Demi LM (2014) Coupling of dietary phosphorus and growth across diverse fish taxa: a meta-analysis of experimental aquaculture studies. Ecology 95:2757–2767. https://doi.org/10.1890/13-1859.1

    Article  Google Scholar 

  9. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x

    Article  PubMed  Google Scholar 

  10. Bullejos FJ, Carrillo P, Gorokhova E, Medina-Sánchez JM, Balseiro EG, Villar-Argaiz M (2014) Shifts in food quality for herbivorous consumer growth: multiple golden means in the life history. Ecology 95:1272–1284. https://doi.org/10.1890/13-0410.1

    Article  PubMed  Google Scholar 

  11. Cañedo-Argüelles M, Boersma KS, Bogan MT, Olden JD, Phillipsen I, Schriever TA, Lytle DA (2015) Dispersal strength determines meta-community structure in a dendritic riverine network. J Biogeogr 42:778–790. https://doi.org/10.1111/jbi.12457

    Article  Google Scholar 

  12. Clissold FJ, Tedder BJ, Conigrave AD, Simpson SJ (2010) The gastrointestinal tract as a nutrient-balancing organ. Proc R Soc Lond B Biol Sci 277:1751–1759. https://doi.org/10.1098/rspb.2009.2045

    Article  Google Scholar 

  13. Cooper SJ (2008) From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite 51:419–427. https://doi.org/10.1016/j.appet.2008.06.005

    Article  PubMed  Google Scholar 

  14. Cross WF, Benstead JP, Rosemond AD, Wallace JB (2003) Consumer-resource stoichiometry in detritus-based streams. Ecol Lett 6:721–732. https://doi.org/10.1046/j.1461-0248.2003.00481.x

    Article  Google Scholar 

  15. da Ferrão-Filho AS, Tessier AJ, DeMott WR (2007) Sensitivity of herbivorous zooplankton to phosphorus-deficient diets: testing stoichiometric theory and the growth rate hypothesis. Limnol Oceanogr 52:407–415. https://doi.org/10.4319/lo.2007.52.1.0407

    Article  Google Scholar 

  16. Dalton CM, El-Sabaawi RW, Honeyfield DC, Auer SK, Reznick DN, Flecker AS (2017) The influence of dietary and whole-body nutrient content on the excretion of a vertebrate consumer. PLoS One 12:e0187931. https://doi.org/10.1371/journal.pone.0187931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Danger M, Arce Funck J, Devin S et al (2013) Phosphorus content in detritus controls life-history traits of a detritivore. Funct Ecol 27:807–815. https://doi.org/10.1111/1365-2435.12079

    Article  Google Scholar 

  18. Demi LM, Benstead JP, Rosemond AD, Maerz JC (2018) Litter P content drives consumer production in detritus-based streams spanning an experimental N:P gradient. Ecology 99:347–359. https://doi.org/10.1002/ecy.2118

    Article  PubMed  Google Scholar 

  19. Dodds WK, Collins SM, Hamilton SK, Tank JL, Johnson S, Webster JR, Simon KS, Whiles MR, Rantala HM, McDowell WH, Peterson SD, Riis T, Crenshaw CL, Thomas SA, Kristensen PB, Cheever BM, Flecker AS, Griffiths NA, Crowl T, Rose-Marshall EJ, El-Sabaawi R, Martí E (2014) You are not always what we think you eat: selective assimilation across multiple whole-stream isotopic tracer studies. Ecology 95:2715–2722. https://doi.org/10.1890/13-2276.1

    Article  Google Scholar 

  20. El-Sabaawi RW, Warbanski ML, Rudman SM, Hovel R, Matthew B (2016) Investment in boney defensive traits alters organismal stoichiometry and excretion in fish. Oecologia 181:1209–1220. https://doi.org/10.1007/s00442-016-3599-0

    Article  PubMed  Google Scholar 

  21. Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80:735–751. https://doi.org/10.1890/0012-

    Article  Google Scholar 

  22. Elser J, O’Brien W, Dobberfuhl D (2000) The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. J Evol Biol 13:845–853

    Article  Google Scholar 

  23. Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate–stoichiometry couplings in diverse biota. Ecol Lett 6:936–943. https://doi.org/10.1046/j.1461-0248.2003.00518.x

    Article  Google Scholar 

  24. Evans-White MA, Dodds WK, Huggins DG, Baker DS (2009) Thresholds in macroinvertebrate biodiversity and stoichiometry across water-quality gradients in Central Plains (USA) streams. J N Am Benthol Soc 28:855–868. https://doi.org/10.1899/08-113.1

    Article  Google Scholar 

  25. Farrell KJ, Rosemond AD, Kominoski JS, Bonjour SM, Rüegg J, Koenig LE, Baker CL, Trentman MT, Harms TK, McDowell WH (2018) Variation in detrital resource stoichiometry signals differential carbon to nutrient limitation for stream consumers across biomes. Ecosystems. https://doi.org/10.1007/s10021-018-0247-z

    Article  Google Scholar 

  26. Feijoó C, Leggieri L, Ocón C, Muñoz I, Rodrigues Capítulo A, Giorgi A, Colautti D, Ferreiro N, Licursi M, Gómez N, Sabater S (2014) Stoichiometric homeostasis in the food web of a chronically nutrient-rich stream. Freshw Sci 33:820–831. https://doi.org/10.1086/677056

    Article  Google Scholar 

  27. Frost PC, Evans-White MA, Finkel ZV, Jensen TC, Matzek V (2005) Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109:18–28. https://doi.org/10.1111/j.0030-1299.2005.14049.x

    Article  Google Scholar 

  28. Frost PC, Benstead JP, Cross WF et al (2006) Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol Lett 9:774–779. https://doi.org/10.1111/j.1461-0248.2006.00919.x

    Article  PubMed  Google Scholar 

  29. Gillooly JF, Brown JH, West GB et al (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251. https://doi.org/10.1126/science.1061967

    Article  CAS  Google Scholar 

  30. Gillooly JF, Allen AP, Brown JH et al (2005) The metabolic basis of whole-organism RNA and phosphorus content. Proc Natl Acad Sci USA 102:11923–11927. https://doi.org/10.1073/pnas.0504756102

    Article  CAS  PubMed  Google Scholar 

  31. González AL, Dézerald O, Marquet PA, Romero GQ, Srivastava DS (2017) The multidimensional stoichiometric niche. Front Ecol Evol 5:110. https://doi.org/10.3389/fevo.2017.00110

    Article  Google Scholar 

  32. González AL, Céréghino R, Dézerald O, Farjalla VG, Leroy C, Richardson BA, Richardson MJ, Romero GQ, Srivastava DS (2018) Ecological mechanisms and phylogeny shape invertebrate stoichiometry: a test using detritus-based communities across Central and South America. Funct Ecol 32:2448–2463. https://doi.org/10.1111/1365-2435.13197

    Article  Google Scholar 

  33. Halvorson HM, Small GE (2016) Observational field studies are not appropriate tests of consumer stoichiometric homeostasis. Freshw Sci 35:1103–1116. https://doi.org/10.1086/689212

    Article  Google Scholar 

  34. Halvorson HM, Fuller C, Entrekin SA, Evans-White MA (2015a) Dietary influences on production, stoichiometry and decomposition of particulate wastes from shredders. Freshw Biol 60:466–478. https://doi.org/10.1111/fwb.12462

    Article  CAS  Google Scholar 

  35. Halvorson HM, Scott JT, Sanders AJ, Evans-White MA (2015b) A stream insect detritivore violates common assumptions of threshold elemental ratio bioenergetics models. Freshw Sci 34:508–518. https://doi.org/10.1086/680724

    Article  Google Scholar 

  36. Halvorson HM, Hall DJ, Evans-White MA (2017) Long-term stoichiometry and fates highlight animal egestion as nutrient repackaging, not recycling, in aquatic ecosystems. Funct Ecol. https://doi.org/10.1111/1365-2435.12875

    Article  Google Scholar 

  37. Halvorson HM, Fuller CL, Entrekin SA, Scott JT, Evans-White MA (2018) Detrital nutrient content and leaf species differentially affect growth and nutritional regulation of detritivores. Oikos. https://doi.org/10.1111/oik.05201

    Article  Google Scholar 

  38. Hood JM, Sterner RW (2014) Carbon and phosphorus linkages in Daphnia growth are determined by growth rate, not species or diet. Funct Ecol 28:1156–1165. https://doi.org/10.1111/1365-2435.12243

    Article  Google Scholar 

  39. Hood JM, McNeely C, Finlay JC, Sterner RW (2014) Selective feeding determines patterns of nutrient release by stream invertebrates. Freshw Sci 33:1093–1107. https://doi.org/10.1086/678693

    Article  Google Scholar 

  40. Jochum M, Barnes AD, Weigelt P, Ott D, Rembold K, Farajallah A, Brose U (2017) Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates. J Anim Ecol 86:1114–1123. https://doi.org/10.1111/1365-2656.12695

    Article  PubMed  Google Scholar 

  41. Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. https://doi.org/10.1093/bioinformatics/btq166

    Article  CAS  Google Scholar 

  42. Lauridsen RB, Edwards FK, Cross WF, Woodward G, Hildrew AG, Jones JI (2012) Consumer–resource elemental imbalances in a nutrient-rich stream. Freshw Sci 31:408–422. https://doi.org/10.1899/11-052

    Article  Google Scholar 

  43. Leal MC, Seehausen O, Matthew B (2017) The ecology and evolution of stoichiometric phenotypes. Trends Ecol Evol 32:108–117. https://doi.org/10.1016/J.TREE.2016.11.006

    Article  PubMed  Google Scholar 

  44. Liess A (2014) Compensatory feeding and low nutrient assimilation efficiencies lead to high nutrient turnover in nitrogen-limited snails. Freshw Sci 33:425–434. https://doi.org/10.1086/675533

    Article  Google Scholar 

  45. Lovelock JE, Margulis L (1974) Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus 26:2–10. https://doi.org/10.1111/j.2153-3490.1974.tb01946.x

    Article  CAS  Google Scholar 

  46. Manning DWP, Rosemond AD, Kominoski JS et al (2015) Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates. Ecology 96:2214–2224. https://doi.org/10.1890/14-1582.1

    Article  PubMed  Google Scholar 

  47. Martinson HM, Schneider K, Gilbert J, Hines JE, Hambäck Fagan WF (2008) Detritivory: stoichiometry of a neglected trophic level. Ecol Res 23:487–491. https://doi.org/10.1007/s11284-008-0471-7

    Article  Google Scholar 

  48. Meunier CL, Malzahn AM, Boersma M (2014) A new approach to homeostatic regulation: towards a unified view of physiological and ecological concepts. PLoS One 9:e107737. https://doi.org/10.1371/journal.pone.0107737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meunier CL, Boersma M, Wiltshire KH, Malzahn AM (2016) Zooplankton eat what they need: copepod selective feeding and potential consequences for marine systems. Oikos 125:50–58. https://doi.org/10.1111/oik.02072

    Article  CAS  Google Scholar 

  50. Meunier CL, Boersma M, El-Sabaawi R, Halvorson HM, Herstoff EM, Van de Waal DB, Vogt RJ, Litchman E (2017) From elements to function: toward unifying ecological stoichiometry and trait-based ecology. Front Environ Sci 5:18. https://doi.org/10.3389/fenvs.2017.00018

    Article  Google Scholar 

  51. Misof B, Liu S, Meusemann K et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767. https://doi.org/10.1126/science.1257570

    Article  CAS  PubMed  Google Scholar 

  52. Moody EK, Corman JR, Elser JJ, Sabo JL (2015) Diet composition affects the rate and N: P ratio of fish excretion. Freshw Biol 60:456–465. https://doi.org/10.1111/fwb.12500

    Article  CAS  Google Scholar 

  53. Moore JC, Berlow EL, Coleman DC et al (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600. https://doi.org/10.1111/j.1461-0248.2004.00606.x

    Article  Google Scholar 

  54. Nestel D, Papadopoulos NT, Pascacio-Villafán C, Righini N, Altuzar-Molina A, Aluja M (2016) Resource allocation and compensation during development in holometabolous insects. J Insect Physiol 95:78–88. https://doi.org/10.1016/j.jinsphys.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  55. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. https://doi.org/10.1093/bioinformatics/btg412

    Article  CAS  Google Scholar 

  56. Parr TB, Capps KA, Inamdar SP, Metcalf KA (2019) Animal-mediated organic matter transformation: aquatic insects as a source of microbially bioavailable organic nutrients and energy. Funct Ecol 33:524–535. https://doi.org/10.1111/1365-2435.13242

    Article  Google Scholar 

  57. Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010) To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:741–751. https://doi.org/10.1111/j.1600-0706.2009.18545.x

    Article  CAS  Google Scholar 

  58. Pilati A, Vanni MJ (2007) Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116:1663–1674. https://doi.org/10.1111/j.0030-1299.2007.15970.x

    Article  Google Scholar 

  59. Prater C, Norman EJ, Evans-White MA (2015) Relationships among nutrient enrichment, detritus quality and quantity, and large-bodied shredding insect community structure. Hydrobiologia 753:219–232. https://doi.org/10.1007/s10750-015-2208-2

    Article  CAS  Google Scholar 

  60. Prater C, Wagner ND, Frost PC (2017) Interactive effects of genotype and food quality on consumer growth rate and elemental content. Ecology 98:1399–1408. https://doi.org/10.1002/ecy.1795

    Article  PubMed  Google Scholar 

  61. Purvis A (1995) A composite estimate of primate phylogeny. Philos Trans R Soc Lond Ser B Biol Sci 348:405–421. https://doi.org/10.1098/rstb.1995.0078

    Article  CAS  Google Scholar 

  62. Richard R, de Roos AM (2018) The impact of development on patterns of nutrient limitation. Funct Ecol 32:1507–1519. https://doi.org/10.1111/1365-2435.13101

    Article  PubMed  PubMed Central  Google Scholar 

  63. Scott EE, Prater C, Norman E, Baker BC, Evans-White MA, Scott JT (2013) Leaf-litter stoichiometry is affected by streamwater phosphorus concentrations and litter type. Freshw Sci 32:753–761. https://doi.org/10.1899/12-215.1

    Article  Google Scholar 

  64. Small GE, Pringle CM (2010) Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a neotropical stream. Oecologia 162:581–590. https://doi.org/10.1007/s00442-009-1489-4

    Article  PubMed  Google Scholar 

  65. Small GE, Helton AM, Kazanci C (2009) Can consumer stoichiometric regulation control nutrient spiraling in streams? J North Am Benthol Soc 28:747–765. https://doi.org/10.1899/08-099.1

    Article  Google Scholar 

  66. Sperfeld E, Wagner ND, Halvorson HM, Malishev M, Raubenheimer D (2017) Bridging ecological stoichiometry and nutritional geometry with homeostasis concepts and integrative models of organism nutrition. Funct Ecol 31:286–296. https://doi.org/10.1111/1365-2435.12707

    Article  Google Scholar 

  67. Stephens JP, Stoler AB, Sckrabulis JP, Fetzer AJ, Berven KA, Tiegs SD, Raffel TR (2017) Ontogenetic changes in sensitivity to nutrient limitation of tadpole growth. Oecologia 183:263–273. https://doi.org/10.1007/s00442-016-3746-7

    Article  PubMed  Google Scholar 

  68. Sterner RW (1990) The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. Am Nat 136:209–229. https://doi.org/10.1086/285092

    Article  Google Scholar 

  69. Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, Princeton

    Google Scholar 

  70. Sun X, Zhou X, Small GE, Sterner R, Kang HZ, Liu C (2013) Energy storage and C:N:P variation in a holometabolous insect (Curculio davidi Fairmaire) larva across a climate gradient. J Insect Physiol 59:408–415. https://doi.org/10.1016/j.jinsphys.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  71. Thomas MA, Walsh KA, Wolf MR et al (2000) Molecular phylogenetic analysis of evolutionary trends in stonefly wing structure and locomotor behavior. Proc Natl Acad Sci USA 97:13178–13183. https://doi.org/10.1073/pnas.230296997

    Article  CAS  PubMed  Google Scholar 

  72. Torres LE, Vanni MJ (2007) Stoichiometry of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos 116:259–270. https://doi.org/10.1111/j.0030-1299.2007.15268.x

    Article  CAS  Google Scholar 

  73. Townsend CR, Scarsbrook MR, Dolédec S (1997) Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshw Biol 37:367–387. https://doi.org/10.1046/j.1365-2427.1997.00166.x

    Article  Google Scholar 

  74. Urabe J, Shimizu Y, Yamaguchi T (2018) Understanding the stoichiometric limitation of herbivore growth: the importance of feeding and assimilation flexibilities. Ecol Lett 21:197–206. https://doi.org/10.1111/ele.12882

    Article  PubMed  Google Scholar 

  75. Vanni MJ, McIntyre PB (2016) Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis. Ecology. https://doi.org/10.1002/ecy.1582

    Article  PubMed  Google Scholar 

  76. Vanni MJ, Flecker AS, Hood JM, Headworth JL (2002) Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking biodiversity and ecosystem function. Ecol Lett 5:285–293. https://doi.org/10.1046/j.1461-0248.2002.00314.x

    Article  Google Scholar 

  77. Welti N, Striebel M, Ulseth AJ, Cross WF, DeVilbiss S, Gilbert PM, Guo L, Hirst AG, Hood J, Kominoski JS, MacNeill KL, Mehring AS, Welter JR, Hillebrand H (2017) Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Front Microbiol 8:1298. https://doi.org/10.3389/fmicb.2017.01298

    Article  PubMed  PubMed Central  Google Scholar 

  78. Woods HA, Perkins MC, Elser JJ, Harrison JF (2002) Absorption and storage of phosphorus by larval Manduca sexta. J Insect Physiol 48:555–564. https://doi.org/10.1016/S0022-1910(02)00060-4

    Article  CAS  PubMed  Google Scholar 

  79. Zhang C, Jansen M, De Meester L, Stoks R (2016) Energy storage and fecundity explain deviations from ecological stoichiometry predictions under global warming and size-selective predation. J Anim Ecol 85:1431–1441. https://doi.org/10.1111/1365-2656.12531

    Article  PubMed  Google Scholar 

  80. Zou K, Thébault E, Lacroix G, Barot S (2016) Interactions between the green and brown food web determine ecosystem functioning. Funct Ecol 30:1454–1465. https://doi.org/10.1111/1365-2435.12626

    Article  Google Scholar 

Download references

Acknowledgements

We thank Brad Austin, Ayla Smartt, Erin Scott, Erin Grantz, Ben Thompson, Jasmine Gilbert, Andrew Sanders, Jason Ramey, Lindsey Abel, Delaney Hall, Amanda Eddy, Grant White, and Clay Prater for assistance in the field and laboratory. This study was funded by the US National Science Foundation (DEB 1020722) and a Doctoral Academy Fellowship from the University of Arkansas Graduate School.

Author information

Affiliations

Authors

Contributions

MAE-W, JTS, and SAE conceived and designed the experiments; HMH and CLF conducted the experiments and collected the data under mentorship of MAE-W, JTS, and SAE; HMH analyzed the data and led writing of the manuscript. All authors contributed to writing and gave approval for publication.

Corresponding author

Correspondence to Halvor M. Halvorson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Communicated by Maarten Boersma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2651 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halvorson, H.M., Fuller, C.L., Entrekin, S.A. et al. Interspecific homeostatic regulation and growth across aquatic invertebrate detritivores: a test of ecological stoichiometry theory. Oecologia 190, 229–242 (2019). https://doi.org/10.1007/s00442-019-04409-w

Download citation

Keywords

  • Ontogeny
  • Shredders
  • Streams
  • Leaf litter
  • Egestion