Scale-dependent patterns of intraspecific trait variations in two globally invasive species

Abstract

Animal species often show substantial intraspecific trait variability (ITV), yet evidence for its flexibility across multiple ecological scales remains poorly explored. Gaining this knowledge is essential to better understand the different processes maintaining ITV in nature. Due to their broad geographic ranges, widespread invasive species are expected to display strong phenotypic variations across their distribution. Here, we quantified the scale-dependent patterns of morphological variability among invasive populations of two global freshwater invaders—red swamp crayfish Procambarus clarkii and pumpkinseed sunfish Lepomis gibbosus—both established in American and European lakes. We quantified patterns in body morphology across different ecological (Individual and Population) and spatial scales (Region). We then analyzed the scale-dependency of morphological variations among lake populations that span a diversity of abiotic and biotic conditions. Next, we used stable isotope analyses to test the existence of ecomorphological patterns linking morphology and trophic niche of individuals. We found that trait variations mainly accounted for at the regional and individual levels. We showed that populations of both species strongly differed between United States and Europe whereas habitat characteristics had a relatively minor influence on morphological variations. Stable isotope analyses also revealed that ecomorphological pattern for the trophic position of L. gibbosus was region-dependent, whereas no ecomorphological patterns were observed for P. clarkii. Overall, our study strongly supports the notion that the patterns of phenotypic variability among invasive populations are likely to modulate the ecological impacts of invasive species on recipient ecosystems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahlroth P, Alatalo RV, Holopainen A et al (2003) Founder population size and number of source populations enhance colonization success in waterstriders. Oecologia 137:617–620. https://doi.org/10.1007/s00442-003-1344-y

    Article  PubMed  Google Scholar 

  2. Alós J, Palmer M, Linde-Medina M, Arlinghaus R (2014) Consistent size-independent harvest selection on fish body shape in two recreationally exploited marine species. Ecol Evol 4:2154–2164. https://doi.org/10.1002/ece3.1075

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alp M, Cucherousset J, Buoro M, Lecerf A (2016) Phenological response of a key ecosystem function to biological invasion. Ecol Lett 19:519–527. https://doi.org/10.1111/ele.12585

    Article  PubMed  Google Scholar 

  4. Araújo MS, Costa-Pereira R (2013) Latitudinal gradients in intraspecific ecological diversity. Biol Lett 9:20130778. https://doi.org/10.1098/rsbl.2013.0778

    Article  PubMed  PubMed Central  Google Scholar 

  5. Araújo MS, Gonzaga MO (2007) Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav Ecol Sociobiol 61:1855–1863. https://doi.org/10.1007/s00265-007-0425-z

    Article  Google Scholar 

  6. Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958. https://doi.org/10.1111/j.1461-0248.2011.01662.x

    Article  PubMed  Google Scholar 

  7. Bassar RD, Marshall MC, Lopez-Sepulcre A et al (2010) Local adaptation in Trinidadian guppies alters ecosystem processes. Proc Natl Acad Sci USA 107:3616–3621. https://doi.org/10.1073/pnas.0908023107

    Article  PubMed  Google Scholar 

  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300. https://doi.org/10.2307/2346101

    Article  Google Scholar 

  9. Bestion E, Clobert J, Cote J (2015) Dispersal response to climate change: scaling down to intraspecific variation. Ecol Lett 18:1226–1233. https://doi.org/10.1111/ele.12502

    Article  Google Scholar 

  10. Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7899–7906. https://doi.org/10.1073/pnas.0803151105

    Article  Google Scholar 

  11. Bolnick DI, Amarasekare P, Araújo MS et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192. https://doi.org/10.1016/j.tree.2011.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carlson RE (1977) A trophic state index for lakes. University of Minnesota, Minneapolis, p 55455. https://doi.org/10.4319/lo.1977.22.2.0361

    Google Scholar 

  13. Chalmandrier L, Münkemüller T, Colace M-P et al (2017) Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. J Ecol 105:277–287. https://doi.org/10.1111/1365-2745.12658

    Article  Google Scholar 

  14. Changeux T (2003) Evolution de la répartition des écrevisses en France métropolitaine selon les enquêtes nationales menées par le conseil supérieur de la pêche de 1977 à 2001. Bull Fr Pêche Piscic 370–371:15–41. https://doi.org/10.1051/kmae:2003002

    Article  Google Scholar 

  15. Colborne SF, Garner SR, Longstaffe FJ, Neff BD (2015) Assortative mating but no evidence of genetic divergence in a species characterized by a trophic polymorphism. J Evol Biol 29:633–644. https://doi.org/10.1111/jeb.12812

    Article  Google Scholar 

  16. Copp GH, Fox MG (2007) Growth and life history traits of introduced pumpkinseed (Lepomis gibbosus) in Europe, and the relevance to its potential invasiveness. In: Gherardi F (ed) Biological invaders in inland waters: profiles, distribution, and threats. Springer, Berlin, pp 289–306  

    Google Scholar 

  17. Costa-Pereira R, Rudolf VHW, Souza FL, Araújo MS (2018) Drivers of individual niche variation in coexisting species. J Anim Ecol. https://doi.org/10.1111/1365-2656.12879

    Article  PubMed  Google Scholar 

  18. Des Roches S, Post DM, Turley NE et al (2018) The ecological importance of intraspecific variation. Nat Ecol Evol 2:57–64. https://doi.org/10.1038/s41559-017-0402-5

    Article  PubMed  Google Scholar 

  19. Domenici P, Turesson H, Brodersen J, Bronmark C (2008) Predator-induced morphology enhances escape locomotion in crucian carp. Proc R Soc B 275:195–201. https://doi.org/10.1098/rspb.2007.1088

    Article  PubMed  Google Scholar 

  20. Dubuc-Messier G, Réale D, Perret P, Charmantier A (2017) Environmental heterogeneity and population differences in blue tits personality traits. Behav Ecol. https://doi.org/10.1093/beheco/arw148

    Article  PubMed  PubMed Central  Google Scholar 

  21. Etchison L, Jacquemin SJ, Allen M, Pyron M (2012) Morphological variation of rusty crayfish Orconectes rusticus (Cambaridae) with gender and local scale spatial gradients. Int J Biol 4:163–171. https://doi.org/10.5539/ijb.v4n1p163

    Article  Google Scholar 

  22. Evangelista C, Boiche A, Lecerf A, Cucherousset J (2014) Ecological opportunities and intraspecific competition alter trophic niche specialization in an opportunistic stream predator. J Anim Ecol 83:1025–1034. https://doi.org/10.1111/1365-2656.12208

    Article  PubMed  Google Scholar 

  23. Evangelista C, Britton RJ, Cucherousset J (2015) Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate. Ecol Evol 5:2193–2202. https://doi.org/10.1002/ece3.1471

    Article  PubMed  PubMed Central  Google Scholar 

  24. Faulks L, Svanbäck R, Eklöv P, Östman Ö (2015) Genetic and morphological divergence along the littoral–pelagic axis in two common and sympatric fishes: perch, Perca fluviatilis (Percidae) and roach, Rutilus rutilus (Cyprinidae). Biol J Linn Soc. https://doi.org/10.1111/bij.12452

    Article  Google Scholar 

  25. Foster SA, Scott RJ, Cresko WA (1998) Nested biological variation and speciation. Philos Trans R Soc Lond B Biol Sci 353:207–218. https://doi.org/10.1098/rstb.1998.0203

    Article  PubMed Central  Google Scholar 

  26. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Thousand Oaks, SAGE Publications

    Google Scholar 

  27. García-Berthou E, Moreno-Amich R (2000) Food of introduced pumpkinseed sunfish: ontogenetic diet shift and seasonal variation. J Fish Biol 57:29–40. https://doi.org/10.1111/j.1095-8649.2000.tb00773.x

    Article  Google Scholar 

  28. Gherardi F (2006) Crayfish invading Europe: the case study of Procambarus clarkii. Mar Freshw Behav Physiol 39:175–191. https://doi.org/10.1080/10236240600869702

    Article  Google Scholar 

  29. Harmon LJ, Matthews B, Des Roches S et al (2009) Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458:1167–1170. https://doi.org/10.1038/nature07974

    Article  CAS  PubMed  Google Scholar 

  30. Hobbs HH, Jass JP, Huner JV (1989) A review of global crayfish introductions with particular emphasis on two North American species. Crustaceana 56:299–316. https://doi.org/10.1163/156854089X00275

    Article  Google Scholar 

  31. Hutchinson GE (1957) A treatise on limnology, vol 1. Geography, Physics and Chemistry, Wiley, New York, p 1015

    Google Scholar 

  32. Jackson MC, Evangelista C, Zhao T et al (2017) Between-lake variation in the trophic ecology of an invasive crayfish. Freshw Biol 62:1501–1510. https://doi.org/10.1111/fwb.12957

    Article  Google Scholar 

  33. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

    Article  Google Scholar 

  34. Knop E, Reusser N (2012) Jack-of-all-trades: phenotypic plasticity facilitates the invasion of an alien slug species. Proc R Soc B 279:4668–4676. https://doi.org/10.1098/rspb.2012.1564

    Article  PubMed  Google Scholar 

  35. Laforsch C, Tollrian R (2004) Inducible defenses in multipredator environments: cyclomorphosis in Daphnia cucullata. Ecology 85:2302–2311. https://doi.org/10.1890/03-0286

    Article  Google Scholar 

  36. Langerhans RB, DeWitt TJ (2004) Shared and unique features of evolutionary diversification. Am Nat 164:335–349. https://doi.org/10.1086/422857

    Article  PubMed  Google Scholar 

  37. Langsrud Ø (2003) ANOVA for unbalanced data: use Type II instead of type III sums of squares. Stat Comput 13:163–167. https://doi.org/10.1023/A:1023260610025

    Article  Google Scholar 

  38. Larson ER, Olden JD (2011) The state of crayfish in the Pacific Northwest. Fisheries 36:60–73. https://doi.org/10.1577/03632415.2011.10389069

    Article  Google Scholar 

  39. Larson ER, Olden JD (2013) Crayfish occupancy and abundance in lakes of the Pacific Northwest, USA. Freshw Sci 32:94–107. https://doi.org/10.1899/12-051.1

    Article  Google Scholar 

  40. Layman CA, Araujo MS, Boucek R et al (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x

    Article  PubMed  Google Scholar 

  41. Li T, Wu J, Chen H et al (2018) Intraspecific functional trait variability across different spatial scales: a case study of two dominant trees in Korean pine broadleaved forest. Plant Ecol 219:875–886. https://doi.org/10.1007/s11258-018-0840-4

    Article  Google Scholar 

  42. Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910. https://doi.org/10.1111/j.1472-4642.2009.00594.x

    Article  Google Scholar 

  43. Matthews B, Marchinko KB, Bolnick DI, Mazumder A (2010) Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation. Ecology 91:1025–1034. https://doi.org/10.1890/09-0235.1

    Article  PubMed  Google Scholar 

  44. Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848. https://doi.org/10.1111/j.1461-0248.2010.01476.x

    Article  PubMed  Google Scholar 

  45. Moran EV, Hartig F, Bell DM (2016) Intraspecific trait variation across scales: implications for understanding global change responses. Global Chang Biol 22:137–150. https://doi.org/10.1111/gcb.13000

    Article  Google Scholar 

  46. Mueller KW (2001) First record of the red swamp crayfish, Procambarus clarkii (Girard, 1852) (Decapoda, Cambaridae), from Washington State, USA. Crustaceana 74:003–1007

    Google Scholar 

  47. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  48. Nilsson PA, Brönmark C, Petterson LB (1995) Benefits of a predator-induced morphology in crucian carp. Oecologia 104:291–296. https://doi.org/10.1007/BF00328363

    Article  PubMed  Google Scholar 

  49. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. https://doi.org/10.1093/bioinformatics/btg412

    Article  CAS  Google Scholar 

  50. Parsons KJ, Robinson BW (2007) Foraging performance of diet-induced morphotypes in pumpkinseed sunfish (Lepomis gibbosus) favours resource polymorphism. J Evol Biol 20:673–684. https://doi.org/10.1111/j.1420-9101.2006.01249.x

    Article  CAS  PubMed  Google Scholar 

  51. Pfennig DW, Wund MA, Snell-Rood EC et al (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467. https://doi.org/10.1016/j.tree.2010.05.006

    Article  PubMed  Google Scholar 

  52. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2018) nlme: linear and nonlinear mixed effects models. R package version 3.1-137. http://CRAN.R-project.org/package=nlme. Accessed 07 April 2018

  53. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718. https://doi.org/10.1890/0012-9658(2002)083%5b0703:USITET%5d2.0.CO;2

    Article  Google Scholar 

  54. Post DM, Layman CA, Arrington DA et al (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. https://doi.org/10.1007/s00442-006-0630-x

    Article  PubMed  Google Scholar 

  55. Quevedo M, Svanbäck R, Eklöv P (2009) Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90:2263–2274

    Article  PubMed  Google Scholar 

  56. R Development Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  57. Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29:165–176. https://doi.org/10.1016/j.tree.2014.01.002

    Article  PubMed  Google Scholar 

  58. Riopel C, Robinson BW, Parsons KJ (2008) Analyzing nested variation in the body form of Lepomid sunfishes. Environ Biol Fishes 82:409–420. https://doi.org/10.1007/s10641-007-9303-9

    Article  Google Scholar 

  59. Robinson BW, Parsons KJ (2002) Changing times, spaces, and faces: tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Can J Fish Aquat Sci 59:1819–1833. https://doi.org/10.1139/f02-144

    Article  Google Scholar 

  60. Rohlf FJ (2015) The tps series of software. Hystrix 26:9–12. https://doi.org/10.4404/hystrix-26.1-11264

    Article  Google Scholar 

  61. Rosenblum EB, Harmon LJ (2011) “Same same but different”: replicated ecological speciation at white sand. Evolution 65:946–960. https://doi.org/10.1111/j.1558-5646.2010.01190.x

    Article  PubMed  Google Scholar 

  62. Smith TB, Skùlason S (1996) Evolutionary significance of resource polymorphisms in fishes, amphibian and birds. Annu Rev Ecol Evol Syst 27:111–133

    Article  Google Scholar 

  63. Sol D, Lefebvre L (2000) Behavioural flexibility predicts invasion success in birds introduced to New Zealand. Oikos 90:599–605. https://doi.org/10.1034/j.1600-0706.2000.900317.x

    Article  Google Scholar 

  64. Souty-Grosset C, Anastácio PM, Aquiloni L et al (2016) The red swamp crayfish Procambarus clarkii in Europe: impacts on aquatic ecosystems and human well-being. Limnologica 58:78–93. https://doi.org/10.1016/j.limno.2016.03.003

    Article  Google Scholar 

  65. Svanbäck R, Eklöv P (2002) Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131:61–70. https://doi.org/10.1007/s00442-001-0861-9

    Article  PubMed  Google Scholar 

  66. Svanbäck R, Eklöv P (2004) Morphology in perch affects habitat specific feeding efficiency. Funct Ecol 18:503–510. https://doi.org/10.1111/j.0269-8463.2004.00858.x

    Article  Google Scholar 

  67. Tinker MT, Bentall G, Estes JA (2008) Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proc Natl Acad Sci USA 105:560–565. https://doi.org/10.1073/pnas.0709263105

    Article  PubMed  Google Scholar 

  68. Twardochleb LA, Olden JD (2016) Non-native Chinese mystery snail (Bellamya chinensis) supports consumers in urban lake food webs. Ecosphere 7:e01293. https://doi.org/10.1002/ecs2.1293

    Article  Google Scholar 

  69. Twardochleb LA, Olden JD, Larson ER (2013) A global meta-analysis of the ecological impacts of nonnative crayfish. Freshw Sci 32:1367–1382. https://doi.org/10.1899/12-203.1

    Article  Google Scholar 

  70. van Kleef H, van der Velde G, Leuven RSEW, Esselink H (2008) Pumpkinseed sunfish (Lepomis gibbosus) invasions facilitated by introductions and nature management strongly reduce macroinvertebrate abundance in isolated water bodies. Biol Invasions 10:1481–1490. https://doi.org/10.1007/s10530-008-9220-7

    Article  Google Scholar 

  71. Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404. https://doi.org/10.1890/0012-9658(1999)080%5b1395:PCCANA%5d2.0.CO;2

    Article  Google Scholar 

  72. Vander Zanden MJ, Vadeboncoeur Y (2002) Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83:2152–2161. https://doi.org/10.1890/0012-9658(2002)083%5b2152:FAIOBA%5d2.0.CO;2

    Article  Google Scholar 

  73. Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can J Fish Aquat Sci 54:1142–1158. https://doi.org/10.1139/f97-016

    Article  Google Scholar 

  74. Wainwright PC (1996) Ecological explanation through functional morphology: the feeding biology of sunfishes. Ecology 77:1336–1343. https://doi.org/10.2307/2265531

    Article  Google Scholar 

  75. Washington Department of Fish and Wildlife (2005) Warmwater fishes of Washington. Report #FM93-9

  76. Weese DJ, Ferguson MM, Robinson BW (2012) Contemporary and historical evolutionary processes interact to shape patterns of within-lake phenotypic divergences in polyphenic pumpkinseed sunfish, Lepomis gibbosus. Ecol Evol 2:574–592. https://doi.org/10.1002/ece3.72

    Article  PubMed  PubMed Central  Google Scholar 

  77. Závorka L, Lang I, Raffard A et al (2018) Importance of harvest-driven trait changes for invasive species management. Front Ecol Environ 16:317–318. https://doi.org/10.1002/fee.1922

    Article  Google Scholar 

  78. Zelditch ML, Swiderski DL, Sheets DH, Fink WL (2004) Geometric morphometrics for biologists. Elsevier Academic Press, New York

    Google Scholar 

  79. Zhao T, Grenouillet G, Pool T et al (2016) Environmental determinants of fish community structure in gravel pit lakes. Ecol Freshw Fish 25:412–421. https://doi.org/10.1111/eff.12222

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to our numerous colleagues for their help during sampling and thank Florian Vincent for creating the map of the studied areas. We thank two anonymous reviewers and the editors for their valuable comments.

Funding

This work was supported by a CNRS-INEE PICS (Ind_Eco_Evo_Inva) and GDRI (EFF), the ONEMA (Projet ISOLAC and ERADINVA) and a PRES-Toulouse Grant (Inva_Eco_Evo_Lac). CE and JC are part of EDB, part of the French Laboratory of Excellence project “TULIP” (ANR-10-LABX.41; ANR-11-IDEX-0002-02). JDO was support by the University of Washington H. Mason Keeler Endowed Professorship.

Author information

Affiliations

Authors

Contributions

CE, JC and JDO designed and conceived the study and led the fieldwork. CE analysed the data and wrote the first draft of the manuscript. All authors contributed critically to the preparation of the manuscript and gave final approval for publication.

Corresponding author

Correspondence to C. Evangelista.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Authorizations to perform this study were provided by the “Arrêtés Préfectoraux—18/09/2014 and 30/10/2014”.

Additional information

Communicated by Leon A. Barmuta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1288 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Evangelista, C., Olden, J.D., Lecerf, A. et al. Scale-dependent patterns of intraspecific trait variations in two globally invasive species. Oecologia 189, 1083–1094 (2019). https://doi.org/10.1007/s00442-019-04374-4

Download citation

Keywords

  • Ecomorphology
  • Lepomis gibbosus
  • Procambarus clarkii
  • Geometric morphometrics
  • Stable isotopes