Skip to main content


Log in

Mowing mitigates the negative impacts of N addition on plant species diversity

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

A Correction to this article was published on 06 April 2019

This article has been updated


Increasing availability of reactive nitrogen (N) threatens plant diversity in diverse ecosystems. While there is mounting evidence for the negative impacts of N deposition on one component of diversity, species richness, we know little about its effects on another one, species evenness. It is suspected that ecosystem management practice that removes nitrogen from the ecosystem, such as hay-harvesting by mowing in grasslands, would mitigate the negative impacts of N deposition on plant diversity. However, empirical evidence is scarce. Here, we reported the main and interactive effects of N deposition and mowing on plant diversity in a temperate meadow steppe with 4-year data from a field experiment within which multi-level N addition rates and multiple N compounds are considered. Across all the types of N compounds, species richness and evenness significantly decreased with the increases of N addition rate, which was mainly caused by the growth of a tall rhizomatous grass, Leymus chinensis. Such negative impacts of N addition were accumulating with time. Mowing significantly reduced the dominance of L. chinensis, and mitigated the negative impacts of N deposition on species evenness. We present robust evidence that N deposition threatened biodiversity by reducing both species richness and evenness, a process which could be alleviated by mowing. Our results highlight the changes of species evenness in driving the negative impacts of N deposition on plant diversity and the role of mowing in mediating such negative impacts of N deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 06 April 2019

    Unfortunately, the panels of (f) in Figures 1, 2, and 4.


Download references


We acknowledge the staff of Erguna Forest-Steppe Ecotone Research Station for their support. We thank Ting-Ting Ren, Pei Zheng, Yan-Yu Hu, Zhi-Wei Zhang, Rui Ding and many undergraduate students from Heilongjiang Bayi Agricultural University for their help in field work and Hai-Yang Zhang for help in data analysis. Comments and suggestions from two anonymous reviewers help improve the quality of this paper. This work was supported by the National Natural Science Foundation of China (31430016, 31822006, and 31770503), National Basic Research Program of China (2016YFC0500601 and 2015CB150802), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15010403), Youth Innovation Promotion Association CAS (2014174), and the Key Research Program from CAS (QYZDB-SSW-DQC006).

Author information

Authors and Affiliations



XH, ZW and XL conceived and designed the experiments. GY, GZ, HW, ZZ, ZL performed the experiments. GY and XL analyzed the data. GY wrote the first draft, XL and CS revised the manuscript; other authors provided editorial advice.

Corresponding author

Correspondence to Xiao-Tao Lü.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Brian J. Wilsey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, GJ., Lü, XT., Stevens, C.J. et al. Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia 189, 769–779 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: