Abstract
Molecular phylogenies are increasingly used to understand how biotic interactions and environment shape phylogenetic community structure (PCS). However, we do not understand the effects of plant–plant interactions and environment on PCS and phylogenetic diversity across spatial scales, particularly in rangelands. Here, we ask: (1) do plant–plant interactions and environment affect PCS and phylogenetic diversity differently across the three spatial scales of the patch, the community, and the habitat? (2) What are the impacts of dominant cushion-nurse plants on the phylogenetic structure of plant communities? We assessed the PCS of semi-arid plant communities along an elevation gradient at the patch, community and habitat scales. Then, we assessed co-occurrence patterns along two sample slopes. Our results indicated important roles for biotic interactions and environmental filtering in determining phylogenetic diversity, with biotic interactions, in particular, having a stronger tendency to increase phylogenetic diversity. This is most likely due to the asymmetrical effects of nurse plants across the three spatial scales on our two different slopes. The impact of biotic interactions caused non-random phylogenetic patterns in more severe environments. In conclusion, biotic interactions influence phylogenetic diversity by altering PCS across aspects and along elevation gradients.
Similar content being viewed by others
References
Alejandro GFB, Chinchilla FA, Magrach A, Romero V, Reyos M, Velilla M, Serrano JM, Amador-Vargas S (2009) Slope orientation enhances the nurse effect of a paramo shrub, Hypericum irazuense (Hypericaceae) in Costa Rica. J Trop Ecol 25:331–335. https://www.jstor.org/stable/25562622
Algar AC, Kerr JT, Currie DJ (2011) Quantifying the importance of regional and local filters for community trait structure in tropical and temperate zones. Ecology 92:903–914. https://doi.org/10.1890/10-0606.1
Anderson TM, Shaw J, Olff H (2011) Ecology’s cruel dilemma, phylogenetic trait evolution and the assembly of Serengeti plant communities. J Ecol 99:797–806. https://doi.org/10.1111/j.1365-2745.2011.01795.x
Borcard D, Gillet F, Legendre P (2012) Numerical ecology with R. Springer, New York, pp 1–306
Bowker MA, Soliveres S, Maestre F (2010) Competition increases with abiotic stress and regulates the diversity of biological soil crusts. J Ecol 98:551–560. https://doi.org/10.1111/j.1365-2745.2010.01647.x
Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA et al (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34. https://doi.org/10.1111/j.13652745.2007.01295.x
Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci USA 105:11505–11511. https://doi.org/10.1073/pnas.0801920105
Butterfield BJ, Cavieres LA, Callaway RM, Cook BJ, Kikvidze Z, Lortie CJ et al (2013) Alpine cushion plants inhibit loss of phylogenetic diversity in severe environments. Ecol Lett 16:478–486. https://doi.org/10.1111/ele.12070
Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R et al (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. https://doi.org/10.1038/nature00812
Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87:109–122. https://doi.org/10.1890/00129658(2006)87%5b109:PSOFPC%5d2.0.CO;2
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12(7):693–715
Chun JH, Lee CB (2017) Disentangling the local-scale drivers of taxonomic, phylogenetic and functional diversity in woody plant assemblages along elevational gradients in South Korea. PLoS ONE 12(10):e0185763. https://doi.org/10.1371/journal.pone.0185763
De’ath G (2002) Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83:1105–1117. https://doi.org/10.1890/00129658(2002)083%5b1105:MRTANT%5d2.0.CO;2
De’ath G (2010) mvpart: Multivariate partitioning. R package version 1.3-1
Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035. https://doi.org/10.1111/j.1365-2486.2010.02263.x
Farzam M, Ejtehadi H (2016) Effects of drought and canopy facilitation on plant diversity and abundance in a semiarid mountainous rangeland. J Plant Ecol. https://doi.org/10.1093/jpe/rtw070
Fine PVA, Kembel SW (2011) Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34:552–565. https://doi.org/10.1111/j.1600-0587.2010.06548.x
Flores J, Jurado E (2003) Are nurse-protege’ interactions more common among plants from arid environments? J Veg Sci 14:911–916. https://doi.org/10.1111/j.1654-1103.2003.tb02225.x
Fournier B, Mouly A, Moretti M, Gillet F (2017) Contrasting processes drive alpha and beta taxonomic, functional and phylogenetic diversity of orthopteran communities in grasslands. Agr Ecosyst Environ 242:43–52. https://doi.org/10.1016/j.agee.2017.03.021
Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621
Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington DC
Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. https://doi.org/10.1080/10635150390235520
Head CEI, Koldewey H, Pavoine S et al (2018) Trait and phylogenetic diversity provide insights into community assembly of reef-associated shrimps (Palaemonidae) at different spatial scales across the Chagos Archipelago. Ecol Evol 8:4098–4107. https://doi.org/10.1002/ece3.3969
Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276
Iyengar SB, Bagchi S, Barua D, Mishra CH, Sancaran M (2017) A dominant dwarf shrub increases diversity of herbaceous plant communities in a Trans-Himalayan rangeland. Plant Ecol 1:1. https://doi.org/10.1007/s11258-017-0734-x
Jankju M, Delavari A, Ganjali A (2008) Interseeding Bromus kopetdaghensis, in shrublands. Rangeland J Iran Soc Range Manag 2:314–328
Joly S, Starr JR, Lewis WH, Bruneau A (2006) Polyploid and hybrid evolution in roses east of The Rocky Mountains. Am J Bot 93:412–425. https://doi.org/10.3732/ajb.93.3.412
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010
Kembel SW, Hubbel SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology 87:86–99. https://doi.org/10.1890/0012-9658(2006)87%5b86:TPSOAN%5d2.0.CO;2
Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. https://doi.org/10.1093/bioinformatics/btq166
Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21(4):393–404
Kores PJ, Cameron KM, Molvray M, Chase MW (1997) The phylogenetic relationships of orchidoideae and spiranthoideae (Orchidaceae) as inferred from rbcL plastid sequences. Lindleyana 12:1–11
Kraft NJB, Ackerly D (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr 80:401–422. https://doi.org/10.1890/09-1672.1
Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O et al (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci USA 106:18621–18626. https://doi.org/10.1073/pnas.0909820106
Krishnadas M, Kumar A, Comita AS (2016) Environmental gradients structure tropical tree assemblages at the regional scale. J Veg Sci 27:1117–1128. https://doi.org/10.1111/jvs.12438
Lopez RP, Valdivia S, Rivera ML, Rios RS (2013) Co-occurrence patterns along a regional aridity gradient of the subtropical andes do not support stress gradient hypotheses. PLoS ONE 8:1–10. https://doi.org/10.1371/journal.pone.0058518
Lopez-Angulo J, Swenson NG, Cavieres LA (2018) Interactions between abiotic gradients determine functional and phylogenetic diversity patterns in Mediterranean type climate mountains in the Andes. J Veg Sci 29(2):245–254
Lortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004) Rethinking plant community theory. Oikos 107:433–438. https://doi.org/10.1111/j.0030-1299.2004.13250.x
Machac A, Janda M, Dunn RR, Sanders NJ (2011) Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 34:364–371. https://doi.org/10.1111/j.1600-0587.2010.06629.x
Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205. https://doi.org/10.1111/j.1365-2745.2008.01476.x
Maltez-Mouro S, Maestre FT, Freitas H (2010) Co-occurrence patterns and abiotic stress in sand-dune communities: their relationship varies with spatial scale and the stress estimator. Acta Oecol 36:80–84. https://doi.org/10.1016/j.actao.2009.10.003
Memariani F, Akhani H, Joharchi MR (2016) Endemic plants of Khorassan-Kopet Dagh floristic province in Irano-Turanian region: diversity, distribution patterns and conservation status. Phytotaxa 249(1):031–117
Mo XX, Shi LL, Zhang YJ, Zhu H, Slik JWF (2013) Change in phylogenetic community structure during succession of traditionally managed tropical rainforest in Southwest China. PLoS ONE 8(7):e71464. https://doi.org/10.1371/journal.pone.0071464
Pashirzad M, Ejtehadi H, Vaezi J, Shefferson RP (2018) Spatial scale-dependent phylogenetic signal in species distributions along geographic and elevation gradients in a mountainous rangeland. Ecol Evol 00:1–11. https://doi.org/10.1002/ece3.4293
Pirani A, Rabeler RK (2017) Nomenclatural notes on Acanthophyllum (Caryophylleae, Caryophyllaceae). Phytotaxa 303(2):197–198. https://doi.org/10.11646/phytotaxa.303.2.11
Piston N, Schob C, Armas C, Prieto I, Pugnaire F (2016) Contribution of co-occurring shrub species to community richness and phylogenetic diversity along an environmental gradient. Perspect Plant Ecol 19:30–39. https://doi.org/10.1016/j.ppees.2016.02.002
Qian H, Chen SH, Zhang JL (2017) Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China. Sci Rep 7:5864. https://doi.org/10.1038/s41598-017-04679-5
Rajaniemi TK, Goldberg DE, Turkington R, Dyer AR (2006) Quantitative partitioning of regional and local processes shaping regional diversity patterns. Ecol Lett 9:121–128. https://doi.org/10.1111/j.1461-0248.2005.00855.x
Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19(1):101–109
Soliveres S, Torices R, Maestre F (2012) Environmental conditions and biotic interactions acting together promote phylogenetic randomness in semiarid plant communities: new methods help to avoid misleading conclusions. J Veg Sci 23:822–836. https://doi.org/10.1111/j.1654-1103.2012.01410.x
Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics. Ecology 87:2418–2424
Valiente-Banuet A, Verdú M (2007) Facilitation can increase the phylogenetic diversity of plant communities. Ecol Lett 10:1029–1036. https://doi.org/10.1111/j.1461-0248.2007.01100.x
Valiente-Banuet A, Verdú M (2013) Plant facilitation and phylogenetics. Ann Rev Ecol Evol Syst 44(25):1–25
Verdú M, Rey PJ, Alcantara JM, Siles G, Valiente-Banuet A (2009) Phylogenetic signatures of facilitation and competition in successional communities. J Ecol 97:1171–1180. https://doi.org/10.1111/j.1365-2745.2009.01565.x
Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098. https://doi.org/10.1093/bioinformatics/btn358
White TJ, Burns T, Lee S, Taylor J (1990) Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press Inc, San Diego, pp 315–322
Yang J, Swenson NJ, Zhang G, Ci X, Cao M, Sha L et al (2015) Local-scale partitioning of functional and phylogenetic beta diversity in a tropical tree assemblage. Sci Rep 5:12731. https://doi.org/10.1038/srep12731
Acknowledgments
We wish to thank Ferdowsi University of Mashhad for financial support. This study was funded by Ferdowsi University of Mashhad (Grant Number: 3/41572).
Author information
Authors and Affiliations
Contributions
MP performed the project, wrote the MS and analyzed all of data as a Ph.D. student. HE defined the project as the main supervisor. JV collaborated as the co-supervisor of the project. RS edited the MS, also allocated his laboratory in Tokyo university to carry out molecular experiments.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Yu-Long Feng.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Pashirzad, M., Ejtehadi, H., Vaezi, J. et al. Plant–plant interactions influence phylogenetic diversity at multiple spatial scales in a semi-arid mountain rangeland. Oecologia 189, 745–755 (2019). https://doi.org/10.1007/s00442-019-04345-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00442-019-04345-9